Erin McGowan

DIMACS REU 2021

References


  1. A. Karpatne, W. Watkins, J. Read, V. Kumar, Physics-guided neural networks (pgnn): An application in lake temperature modeling (2018). arXiv:1710.11431.

  2. B. Kapusuzoglu, S. Mahadevan, Physics-informed and hybrid machine learning in additive manufacturing: Application to fused filament fabrication, JOM 72 (2020). doi:10.1007/s11837-020-04438-4. URL https://doi.org/10.1007/s11837-020-04438-4

  3. G. J. Marshall, S. M. Thompson, N. Shamsaei, Data indicating temperature response of ti–6al–4v thin-walled structure during its additive manufacture via laser engineered net shaping, Data in Brief 7 (2016) 697–703. doi:https://doi.org/10.1016/j.dib.2016.02.084. URL https://www.sciencedirect.com/science/article/pii/S2352340916301081

  4. G. Welsch, R. Boyer, E. Collings, Materials properties handbook: Titanium alloys (1993).

  5. K. Simonyan, A. Zisserman, Very deep convolutional networks for largescale image recognition (2015). arXiv:1409.1556.

  6. M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M. A. Tschopp, L. Bian, Porosity prediction: Supervised-learning of thermal history for direct laser deposition, Journal of Manufacturing Systems 47 (2018) 69–82. doi:https://doi.org/10.1016/j.jmsy.2018.04.001. URL https://www.sciencedirect.com/science/article/pii/S0278612518300402

  7. M. Schmidt, M. Merklein, D. Bourell, D. Dimitrov, T. Hausotte, K. Wegener, L. Overmeyer, F. Vollertsen, G. N. Levy, Laser based additive manufacturing in industry and academia, CIRP Annals 66 (2) (2017) 561–583. doi:https://doi.org/10.1016/j.cirp.2017.05.011. URL https://www.sciencedirect.com/science/article/pii/S0007850617301506

  8. Q. Tian, S. Guo, E. Melder, L. Bian, W. Guo, Deep learning-based data fusion method for in situ porosity detection in laser-based additive manufacturing, Journal of Manufacturing Science and Engineering 143 (2021). doi:10.1115/1.4048957. URL https://doi.org/DOI: 10.1115/1.4048957

  9. V. Gawade, V. Singh, W. Guo, Leveraging simulated and empirical data-driven insight to supervised-learning for porosity prediction in laser metal deposition, Manuscript in Preparation (2021).

  10. W. Guo, Q. Tian, S. Guo, Y. Guo, A physics-driven deep learning model for process-porosity causal relationship and porosity prediction with interpretability in laser metal deposition, CIRP Annals - Manufacturing Technology 69 (1) (2020) 205–208, publisher Copyright: © 2020 CIRP. doi:10.1016/j.cirp.2020.04.049.

The above work is supported by NSF grant CCF-1852215.

Thank you so much to the Rutgers DIMACS Team and the National Science Foundation (NSF) for this opportunity!