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Introduction

Configuration Space: Space of all possible positions of objects (think
particles) in a given system.

Wave Function (ψ): a function that guides the motion of all objects
in a system.

Guiding Equation (ρ): equation that gives trajectories of a given
object.

In Bohmian Mechanics, particles have definite positions that change
with time. One wave function, defined in the configuration space of a
system of particles, guides the motion of all particles by giving the
guiding equation for each particle.

We conducted our research gradually, first examining the system of a
single photon, then that of a single electron, then that of the two
without any interaction, and, at last, that of two interacting.
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Single Photon System
According to Kiessling & Tahvildar-Zadeh, the wave function of a
photon is a rank-2 bi-spinor field defined on the configuration
spacetime of the photon.

In one space dimension this means:

Ψph(t, s) =

(
0 χ−(t, s)

χ+(t, s) 0

)
Since photon is a relativistic quantum particle, its wave function must
satisfy a relativistic equation
Kiessling & Tahvildar-Zadeh also discovered this equation in 2018. It
is a Dirac-type equation, and in 1-dim. it reads:

−i~γµ
∂Ψph

∂xµ
= 0,

where ~ = reduced Planck’s constant, x0 = t, x1 = s,

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
, and repeated indices are summed

over the range µ = 0, 1.
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Initial Wave Function

The photon wave equation needs to be solved given an initial wave
function Ψph(0, s) = Ψ0

ph(s).

Typical initial data corresponding to a photon localized in both
position and momentum space (subject to Uncertainty Principle) are
pictured below:
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Photon Probability Current and Velocity Field

According to Kiessling and Tahvildar-Zadeh, in one space dimension
the quantum probability current of detecting the photon is

jµph(time, position) =
1

4
trace(Ψphγ

µΨphγ(X ))

Here X = (X 0,X 1) is a constant vector field computed from Ψ0
ph,

γ(X ) := γ0X
0 + γ1X

1, and Ψ := γ0Ψ†γ0.

The current is conserved: ∂µj
µ
ph = 0, future directed (j0 ≥ 0), and

timelike (j0 ≥ |j1|).

The probability density of detecting the photon at event (t, s) is
ρ(t, s) = j0ph(t, s).

ρ(t, s) is normalized, namely
∫
ρ(t, s)ds = 1.
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Photon Probability Density

The photon probability density looks like this:
http://reu.dimacs.rutgers.edu/~aas377/photon_pdf.mp4

Varying initial conditions gives us the following: http://reu.

dimacs.rutgers.edu/~aas377/multiple_photon_pdf.mp4
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The Guiding Equation

The motion of the photon is guided by its wave function:{
dq
dt = vph(t, q(t)) = j1(t,q(t))

j0(t,q(t))

q(0) = q0

where q(t) is the actual position of the photon at time t.

q0 is the actual initial position of the photon. All we know about it is
that it is randomly distributed according to the initial probability
density ρ(0, s).
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Single Electron System

According to Paul Dirac, the wave function of a single electron is a
spin 1/2 field defined on the configuration space of the electron.

In one space dimension this means:

Ψel(t, s) =

(
Ψ−(t, s)
Ψ+(t, s)

)
Like in the case of a single photon, the wave function of a single
electron also satisfies a relativistic equation. In particular, it satisfies
the massive Dirac equation:

−i~γµ∂µΨel + melΨel = 0,

where mel = the mass of electron.
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Electron Probability Current and Velocity Field, and
Guiding Equation

The probability current of an electron is known:

jµel(time, position) = Ψelγ
µΨel

, where Ψ := Ψ†γ0 is the Dirac adjoint for rank-one bispinors.

We define the guiding velocity field of an electron in the same way as
that of a photon:

vel(t, s) :=
j1(t, s)

j0(t, s)
.

Similarly to the photon case, the guiding equation for the electron is:{
dq
dt = vel(t, q(t)) = j1(t,q(t))

j0(t,q(t))

q(0) = q0
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Electron Probability Density

http://reu.dimacs.rutgers.edu/~aas377/electron_pdf.mp4
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Electron Trajectories and Parameters
The electron wave function Ψel , has a mass term: ω =mass/~, and a
parameter we can change: standard deviation of the initial
distribution: σ.The following graph shows the trajectory of an
electron guided by the velocity field with different parameters.
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Two-body, Non-interacting System

Now, we examine the case in which a photon and an electron are
both present, but do not interact. In this case, we have one wave
function that guides the motion of each particle through its respective
guiding equation.

The wave function, ψ, is a function of four variables, namely the time
and position of each particle.

To get a wave function that describes both a photon and an electron
in a non-interacting system, we take the Tensor Product (⊗) of the
electron and the photon wave functions, giving us a four component
object ψ = (ψ++, ψ+−, ψ−+, ψ−−)

The guiding equations for photon and electron are derived using the
Hypersurface Bohm-Dirac (HBD) Theory, which allows us to describe
the motion of the photon and electron in a common time
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Wave Equation and Probability Current

The tensored wave function satisfies a relativistic wave equation
obtained by Tensor Product of the photon and electron wave
equations 

−i~γµ∂xµphψ = 0

−i~γµ∂xµelψ + melψ = 0

ψ(0, sph, 0, sel) = ψ0(sph, sel)

Since Tensor Product preserves probability distributions, ”multiplying”
the probability density movies of the photon and electron gives the
joint probability density for the non-interacting system: http:

//reu.dimacs.rutgers.edu/~aas377/non_interacting2.mp4

The probability current is the following:
j10 = |ψ++|2 + |ψ+−|2 − |ψ−+|2 − |ψ−−|2
j01 = |ψ++|2 − |ψ+−|2 + |ψ−+|2 − |ψ−−|2
j00 = |ψ++|2 + |ψ+−|2 + |ψ−+|2 + |ψ−−|2
j11 = |ψ++|2 − |ψ+−|2 − |ψ−+|2 + |ψ−−|2
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The probability current is the following:
j10 = |ψ++|2 + |ψ+−|2 − |ψ−+|2 − |ψ−−|2
j01 = |ψ++|2 − |ψ+−|2 + |ψ−+|2 − |ψ−−|2
j00 = |ψ++|2 + |ψ+−|2 + |ψ−+|2 + |ψ−−|2
j11 = |ψ++|2 − |ψ+−|2 − |ψ−+|2 + |ψ−−|2
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Trajectories of the Two-body, Non-interacting System
The following graph shows the trajectories of a non-interacting
system of one electron and one photon.
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Chapter 4: Two-body, Interacting System

To obtain an interacting system from a non-interacting system, it is
necessary to add some conditions such that the particles do not
simply go through each other.

We do this by adding a boundary condition: we set the relative
velocities of photon and electron to be 0 when the particles are at the
same space and time.

Adding the boundary condition to the wave function gives us a
modified probability density function: http:

//reu.dimacs.rutgers.edu/~aas377/interacting_pdf_2.mp4
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Trajectories of the Two-body, Interacting System
Adding the boundary condition to the wave function gives us the
trajectories of an interacting electron-photon system.
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Varying Parameters in the Interacting System
Changing the sigma and omega of the electron gives us the following
changes in trajectories of the electron:
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Varying Parameters in the Interacting System

Changing the polarization angles of electron and photon gives us:
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Varying Parameters in the Interacting System

Changing the mean momentum of the incoming photon varies the
trajectories as follows:

Momentum is related to energy, so if the photon does not have
enough momentum, it cannot get the electron to bounce away.
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Thank You

This research is made possible by the Rutgers Math Department,
REU-DIMACS, and the generous help from Professor Shadi
Tahvildar-Zadeh
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