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Abstract

Surface texture is an important quality characteristic of many products. This paper provides an overview of several different approaches to

image texture analysis and demonstrates their use on the problem of classifying a set of rolled steel sheets into various quality grades.

Methods covered include traditional statistical approaches such as gray level co-occurrence matrix (GLCM) methods, multivariate statistical

approaches based on PCA and PLS, and wavelet texture analysis.

Traditional multivariate classification approaches, such as PLS-DA, applied directly to the images are shown to fail because of the loss of

spatial identity of the variables (pixels) in those approaches, and the lack of congruency of the images. However, approaches that re-introduce

spatial information, such as performing two-dimensional FFT on the images prior to applying multivariate methods can perform well. A new

approach that re-introduces spatial information through image shifting and stacking, followed by multivariate image analysis (MIA) is

presented and shown to work well. It can also be used to develop optimal spatial filters for extracting texture information. Wavelet texture

analysis (WTA) methods are discussed and insight into their space/frequency decomposition behavior is used to show why they are generally

considered to be state of the art in texture analysis.
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1. Introduction extracting textural features. Four categories can be defined:
Although one can intuitively associate several image

properties such as smoothness, coarseness, depth, regularity,

etc. with texture [1], there is no formal or complete definition

of texture. Many researchers have described texture using

various definitions. Russ [2] loosely defined image texture as

a descriptor of local brightness variation from pixel to pixel in

a small neighborhood through an image. Alternatively, tex-

ture can be described as an attribute representing the spatial

arrangement of the gray levels of the pixels in a region of a

digital image [3]. Texture analysis has played an important

role in many areas including medical imaging, remote sens-

ing and industrial inspection, and its tasks are mainly classi-

fication, segmentation, and synthesis [4–6].

The approaches for analyzing texture are very diverse,

and differ from each other mainly by the method used for
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(1) statistical methods, (2) structural methods, (3) model-

based methods, and (4) transform-based methods.

Statistical texture analysis techniques primarily describe

texture of regions in an image through higher-order

moments of their grayscale histograms [7]. Probably, the

most frequently cited method for texture analysis is based

on extracting various textural features from a gray level co-

occurrence matrix (GLCM) [8]. The GLCM approach is

based on the use of second-order statistics of the grayscale

image histograms. Alternatively, the run length matrix

(RLM) encompasses higher-order statistics of the gray level

histogram. The RLM texture analysis approach character-

izes coarse textures as having many pixels in a constant gray

level run and fine textures as having few pixels in such a run

[9]. Besides traditional statistical texture analysis, multivar-

iate statistical methods have also been proposed for textural

feature extraction. Considering an image as a matrix, the

Singular Value Decomposition (SVD) spectrum is a sum-

mary vector of image texture represented by its singular

values. The SVD spectrum has been used as a textural

feature vector for image classification [10,11].
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Structural texture analysis techniques describe a texture

as the composition of well-defined texture elements such as

regularly spaced parallel lines. The properties and placement

rules of the texture elements define the image texture.

Various structural texture analysis approaches have been

proposed, ranging from using different shapes of structuring

elements [12] to conceiving real textures as distorted ver-

sions of ideal textures [13]. However, these methods appear

to be limited in practicality since they can only describe

very regular textures [1].

Model-based texture analysis techniques generate an

empirical model of each pixel in the image based on a

weighted average of the pixel intensities in its neighbor-

hood. The estimated parameters of the image models are

used as textural feature descriptors. Examples of such

model-based texture descriptors are autoregressive (AR)

models [14], Markov random fields (MRF) [15], and fractal

models [16].

Finally, transform-based texture analysis techniques con-

vert the image into a new form using the spatial frequency

properties of the pixel intensity variations. The success of

these latter techniques lies in the type of transform used to

extract textural characteristics from the image. Indhal and

Næs [17] illustrated the use of spectra from 2-D Fast Fourier

Transform (FFT) magnitude images for textural feature

extraction. Image classification using Multi-way Principal

Component Analysis (MPCA) on 2-D FFT magnitude

images to extract features from various images was used

by Geladi [18]. The Gabor or Wavelet transforms have been

preferred recently in image texture analysis due to their

space-frequency decomposition abilities. Features derived

from a set of Gabor filters have been widely used in texture

analysis for image segmentation [19]. Wavelet transform

methods of feature extraction have been used to characterize

texture and to treat the problems of texture segmentation

and classification [4–6,20–22]. The Angle Measure Tech-

nique (AMT) has been used to extract textural features from

unfolded image pixel values in order to characterize and

predict externally measured reference textures using multi-

variate statistical techniques [11,23].

The purpose of this paper is to provide an overview and

discussion of several of the above approaches and to
Fig. 1. Examples of three types of steel surface grayscale images. (a) Excellent surf

(M06), and (d) bad surface quality (B12).
contrast them by applying them to the classification of the

texture of steel surface images. Differences among the

approaches and the limitations of some of them are high-

lighted, and some new approaches are presented. The paper

is organized as follows. In Section 2, a brief description of

the image data set (used in this paper for illustration of the

methods) is presented, and the classification objectives are

defined. Sections 3–5 will outline various approaches for

texture analysis and will apply them to the example image

data set. Conclusions are given in Section 6.
2. Description of data set and classification objectives

Prior to shipping, steel quality is often monitored by

performing random quality control checks on finished steel

rolls. The quality of a steel sheet is reflected in the number

and severity of pits on its surface. Good quality steel

surfaces have few pits that are quite shallow and randomly

distributed. When the pits become deeper, start to join, and

result in deep craters throughout the steel, the surface

quality is considered to be bad. Skilled graders visually

determine the degree of steel surface pitting based on

various criteria developed from previous experience and

by comparison with standard samples. Classification using

these criteria is time consuming and requires very experi-

enced graders. Thus, an automated image-based grading

system would be useful.

For this study, a total of 35 images of steel surfaces were

obtained. Sheets with varying degrees of surface pits were

cut from finished steel rolls. In order to highlight the surface

pits prior to imaging, each slab is pre-treated by pouring

black ink upon the surface. After the ink had filled into the

pits, the steel slabs are lightly cleaned with a cloth. This

results in the steel surface pits being represented by black

areas. The stained steel slabs are then digitally imaged as

grayscale images.

Fig. 1 shows examples of steel surface images with

excellent, good, medium and bad surface qualities. An

example of bad surface quality (see Fig. 1d) contains various

‘snake’-like patterns representing deep pits that have joined

to form craters. Fig. 1c illustrates an example of a medium
ace quality (E02), (b) good surface quality (G02), (c) medium surface quality
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quality surface, which contains more pronounced pits as

compared to the excellent and good quality samples. How-

ever, it does not contain the serpentine patterns exhibited by

the bad quality steel. In all the data set images, ink smudge

marks are also evident on the steel surfaces due to the manual

cleaning of excessive ink with a cloth. The complete steel

image data set from the four pre-labeled surface quality

classes is available from the McMaster Advanced Control

Consortium (MACC) FTP server [24]. Each image is an 8-bit

grayscale image with pixel dimensions of 479� 508. All

images have been pre-processed to enhance their contrast via

intensity histogram stretching [25]. Table 1 shows the

division of 35 sample images into their respective pre-

labeled classes, as determined by experienced graders. How-

ever, it is important to note that the selected classes are not

clearly separated, but rather represent a progression from bad

to excellent with the boundaries quite vague, particularly

between the good and excellent classes.

The objective of using this data set is to illustrate

classification based on the presented texture analysis tech-

niques using the pre-labeled classes as a benchmark, and to

comment on some of their strengths and weaknesses. No

attempt is made to assess the performance of each method

based on error rates of classification since the sample size

(35 images) is inadequate for that purpose.

Data classification using the latent variable spaces of

multivariate statistical methods like PCA and PLS has been

widely used in the chemometrics literature [26]. Unsuper-

vised classification can be achieved through observing score

clustering patterns in the latent space of a single PCA model.

Supervised classification schemes based on building models

for the known classes are Soft Independent Modeling of

Class Analogy (SIMCA) approach [27] and Partial Least

Squares Discriminant Analysis (PLS-DA) [28]. Because the

purpose of this paper is to analyze different approaches for

textural feature extraction, PCA and PLS-DA are used

throughout this paper as unsupervised and supervised clas-

sification methods, respectively.
Table 1

Pre-labeled classes of the complete steel surface grayscale image data set

and basic statistics of pixel intensities

Excellent surface Good surface Medium surface Bad surface

Sample ID Sample ID Sample ID Sample ID

E01 G01 M01 B01

E02 G02 M02 B02

E03 G03 M03 B03

E04 G04 M04 B04

E05 G05 M05 B05

E06 G06 M06 B06

E07 G07 B07

E08 G08 B08

G09 B09

B10

B11

B12

Underlined samples are used as test data in supervised classification.
3. Texture analysis using gray level co-occurrence

matrix features

In this section, the GLCM is presented as representative

of the statistical approaches to texture analysis. The GLCM

of an image is an estimate of the second-order joint

probability, Pd(i, j) of the intensity values of two pixels (i

and j), a distance d apart along a given direction h, i.e., the
probability that i and j have the same intensity. This joint

probability takes the form of a square array Pd, with row and

column dimensions equal to the number of discrete gray

levels (intensities) in the image being examined. If an

intensity image were entirely flat (i.e. contained no texture),

the resulting GLCM would be completely diagonal. As the

image texture increases (i.e. as the local pixel intensity

variations increase), the off-diagonal values in the GLCM

become larger.

The pixel intensity resolution of the steel surface gray-

scale images used in this paper is 8-bit, which result in

GLCMs with dimensions of 256 rows� 256 columns for a

given displacement vector. Finding GLCMs for all distances

(d) and angles (h) would require a prohibitive amount of

computation. Haralick et al. [8] suggested using GLCMs

calculated from four displacement vectors with d = 1, or 2
pixels, and h= 0j, 45j, 90j, and 135j. In this example, only

one GLCM was calculated for each of the 35 grayscale steel

surface images using a single displacement vector with

d = 1, and h = 135j [(xlag,ylag)=(1,1)]. The scale of the

displacement vector was intentionally chosen to be 1 for

sake of consistency and for comparison with the MIA-based

texture analysis method described in Section 4.2. Because of

the quite symmetric nature of the steel surfaces, a single

angle was found to be adequate.

Haralick et al. [8] proposed a quantitative analysis of the

GLCM through 14 textural descriptors calculated from Pd,

although typically only a few of these are widely used

[7,29–31]. In this paper, four of the most commonly used

descriptors (the angular second moment, contrast, correla-

tion, and entropy) are used to extract textural features from

the 35 GLCMs of the steel surface grayscale image data set.
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Xn

i¼1

Xn

j¼1

fPdði; jÞg2 ð1Þ
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Xn�1
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Fig. 2. Unsupervised classification of steel surface images in the latent space of GLCM features.
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where the means and variances in the x and y direction are

given by

lx ¼
Xn

i¼1

i
Xn

j¼1

Pdði; jÞ; ly ¼
Xn

j¼1

j
Xn

i¼1

Pdði; jÞ ð5Þ
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ði� lxÞ2
Xn

j¼1

Pdði; jÞ;

ry ¼
Xn

j¼1

ðj� lyÞ
2
Xn

i¼1

Pdði; jÞ ð6Þ

Fig. 2 illustrates the achieved unsupervised classification

of the 35 steel surface images in the score space of PCA. It

can be seen that excellent, good, and bad surfaces are not

separable at all, although the t1 axis separates the medium

surfaces from the others quite well. (In Fig. 2, highlighting

of the cluster boundary is done for visual purposes only.)

Supervised classification using PLS-DA fails to show any

improvement in separating the excellent, good, and bad

surfaces.
4. Direct multivariate statistical approaches to texture

analysis

In this section, we examine multivariate statistical

approaches to extract textural information by applying

PCA and PLS to image texture directly. The intention is

to show the limitations of these approaches that arise
because of their loss of spatial information, and to discuss

and illustrate modifications of the approach that regain

spatial information and thereby allow for efficient textural

classification.

4.1. Supervised classification of steel surface images using

a direct application of PLS-DA to image texture

A data matrix X is constructed, which contains n rows

each corresponding to the unfolded pixel data from one steel

surface image. Since the class belonging of each image is

known a priori, this information is provided through a Y

matrix of dummy (0,1) variables in order to train the PLS-

DA regression model (Fig. 3). The model is built between X

and Y for a training set of images comprising representative

samples from each class. Once trained, the PLS-DA model

can be used on a validation set of new images in order to

predict their class belongings. This approach has been

presented [32] using an equivalent but more parsimonious

X matrix, with each row comprising a selected set of

wavelet coefficients to represent each image.

Out of the 35 steel images, a training set of 25 images

(ones without underline in Table 1) representing the four

surface qualities was chosen to develop the PLS-DA regres-

sion model. The developed PLS-DA model was then tested

on a test set of the remaining 10 steel sample images

(underlined ones in Table 1).

Pixels from 25 steel surface grayscale images of the

training set (each image has dimensions: 479� 508 pixels)

were unfolded into observations of the predictor array X



Fig. 3. Schematic of training a PLS-DA model to discriminate steel surface images.
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(with dimension: 25 rows� 243,332 columns). As seen in

Fig. 3, the columns of X represent unique pixel locations

through the steel surface images. A kernel-based PLS

algorithm [33] was used to develop the PLS-DA regression

model between X and Y.

Two (A= 2) latent variables were found to be significant

and the variance explained on the fitted samples was Ry
2 =

0.9. The latent variables (t1,t2) of the resulting PLS-DA

model provide a low-dimensional multivariate description
Fig. 4. Supervised classification of steel surface images usi
of the images in the rows of X (which simultaneously

accounts for their class memberships provided in Y).

Fig. 4 illustrates a scatter plot of the two score vectors (t1
and t2) of the trained PLS-DA model using the steel surface

training set data. Solid points represent the training set

samples from four surface quality classes. According to

the manually highlighted point clusters in Fig. 4 (done only

for visual purposes), it can be seen that the discrimination of

the training set steel sample images is very good.
ng a direct application of PLS-DA to image texture.
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A model developed from a training set is of little use if it

cannot adequately classify new images, not included in the

original training set. Hence, the developed PLS-DA model

was used on the 10 steel surface images from the test set. The

PLS-DA scores values (t1,t2) for these test images are

indicated by cross (‘ + ’) points in the t1 vs. t2 score plot in

Fig. 4. It can be seen from the figure that the PLS-DA model

fails miserably in classifying the new steel surface images.

Although the PLS-DA classification in the training stage

produced tight and well separated score clusters (Fig. 4),

none of the 10 validation set samples fell into their respective

pre-labeled classes and all had scores clustering around (0,0).

The poor performance of the PLS-DA classification of

texture is not surprising because spatial information is lost in

these methods upon unfolding the grayscale steel surface

images into row vectors of X. Each column (variable) in X

represents a particular pixel location, whereas each row

(observation) represents a unique steel surface image. Upon

PLS-DA decomposition of X, the resulting weight vectors

relate the importance of different pixel locations (variables)

to the classification provided in Y. However, unlike with

chemical data or industrial data where a variable defined in X

does have a consistent meaning from observation to obser-

vation, the pixel values at the same locations in the different

images (columns of X) do not have any meaningful rela-

tionship with one another. They represent pixel intensities

from arbitrary locations on different steel surfaces. For all

intensive purposes, the PLS-DA model would give similar

results (in terms of data fit and predictive ability) if one were

to construct X via unfolding each steel image by randomly

selecting the pixel locations in each image and forming row

vectors. This lack of congruency of the stacked images

makes such an analysis by PCA or PLS meaningless.

Furthermore, any permutations of the columns of X (e.g.

exchanging columns 1 and 125 in X) will result in exactly the

same model. In other words, multivariate projection methods

(PCA and PLS) contain no spatial information on the relative

location of the pixels with respect to one another.

Since texture is a function of spatial variations in

neighboring pixel intensities throughout an image, the

absence of spatial information in PCA or PLS models means

they cannot be used directly for texture analysis. However,

there are several ways in which spatial information can be

reintroduced into PCA and PLS image models. These are

described in the following section.

4.2. Classification using MIA of steel surface images

augmented with spatial information

The lost of spatial information (upon unfolding images)

could be regained to a certain extent if each individual

texture image were suitably augmented with different ver-

sions of itself using various techniques to form new varia-

bles of a multivariate image. The resulting data set may then

be analyzed using MPCA and Multivariate Image Analysis

(MIA) techniques [34]. In that case, the model would be
forced to explain local variations of pixel intensities over a

pre-defined neighborhood.

There are several ways of regaining spatial information

through augmenting the steel image. One approach is to

apply multivariate statistical techniques to a suitable spatial

transform of the image data such as the two-dimensional

Fast Fourier Transform (2-D FFT) spectrum. This approach

is further discussed in the next section under transform-

based methods.

Other approaches are to augment each image with several

filtered versions of the same image using any set of the

spatial filters available in most image processing software,

and then use MIA based on multi-way PCA or PLS to build

the classification models. Such an approach was used by

Lied et al. [34] for texture-based discrimination of different

classes within an image. Three different texture filters

(Median filter, Laplace filter, and a compound filter with a

combination of various filters) were used to filter the image

at each pixel location and the filtered versions of the image

were used as new channels of a multivariate image. A stack

of congruent images was created consisting of the original

image with all its filtered versions aligned and stacked

above it. Hence at each pixel location, one had the original

grayscale signal and directly above (or below) it the value of

various spatial filters applied at that pixel location. Classi-

fication of new images is then performed by segmentation

(masking) in the feature (score) space of PCA.

Difficulties in the above approach are to decide what

‘potpourri’ of spatial filters to apply in order to obtain the

augmented image as well as the increase in the size of data.

We therefore present an equivalent approach, but where the

data itself is automatically used to determine the optimal

spatial filters that should be applied in order to obtain the best

classification. In this approach, the spatial pixel intensity

distribution in the steel surface image is captured through

spatially shifting the image in different directions, and then

stacking the shifted images on top of each other to form a

three-way pixel array, as shown in Fig. 5. The resulting three-

dimensional image data is a multivariate image where the

third dimension is the spatial shifting index. Each image in

such a stack would contain the same feature information, but

at each pixel location, the vertical direction would contain

information at the pixel of interest, as well as at all spatial

locations surrounding it. Multi-way PCA will then find

scores that are linear combinations of these spatially shifted

pixels defined by the loadings. Each score will therefore

represent some form of spatial derivative filter that explain

the greatest variability in the training image.

The only disadvantage in this scheme of image augmen-

tation is that again one has a greatly expanded data set with

many more columns in the unfolded X matrix. In this

approach, a single training image must be used, since as

discussed earlier, there is no congruency among pixels of

different images. Hence, the training image must contain

elements of all features that are important in the classification.

Therefore, a composite imagemade up of digitally combining



Fig. 5. (a) A multivariate image created via spatial shifting in four adjacent directions and stacking the shifted images. (b) Eight possible directions in which an

image could be shifted.
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several images (e.g., excellent, good, medium and bad steel

images) is usually used. Features are then obtained by

segmenting (masking) the PCA score plots (as commonly

done in MIA) into regions that define different texture

characteristics. New images are then classified by evaluating

the number of pixels falling into these feature masks. This is

illustrated below for the steel surface examples.

4.2.1. Texture analysis of steel images using MIA on shifted

and stacked images

Performing MIA of a multivariate image resulting from

spatially shifting and stacking an image (Fig. 5) allows the

latent variables of multi-way PCA to extract almost any

two-dimensional spatial filter structure allowable by the

amount (and direction) of shifting. The steel surface image

sample previously shown in Fig. 1d representing bad steel

surface quality is used in this study as the training image. It

contains almost all features present in the 35 steel samples,

and hence was deemed to provide a reasonable training

image. The original image was spatially shifted in eight

adjacent directions (see Fig. 5b) by 1 pixel, and the shifted

images were stacked above the original to form a nine-

variable multivariate image. After shifting and stacking, the

resulting three-way array was cropped at the edges to

discard all the non-overlapping sections. MPCA decompo-

sition was then performed on the resulting multivariate

image array (Xbad) without any pre-scaling or mean center-

ing of the data. The cumulative percent sum of squares

explained by the first three PCs was 99.20%. Only the first

three PCs have been used in subsequent analyses, with the

rest of the PCs (four to nine) being attributed to explaining

noise in the multivariate image. Table 2 shows the

corresponding weights of the first three loading vectors
(p1,p2,p3) with respect to the nine variable images of Xbad.

The loading vector coefficients have been re-arranged as

3� 3 arrays to correspond with the respective spatial

locations of the shifted pixels in the original image.

Since no pre-scaling of the image data was performed the

first Principal Component (PC) explains mainly the average

pixel intensity over their local area in the multivariate

image. This is evident from the fact that all nine p1 loading

coefficients are positive and almost equal (Table 2a). The

resulting T1 score image of the first PC turns out to be a

blurred version of the original image due to the averaging

nature of the p1 loading coefficients. This is due to the fact

that PC1 extracts only the pixel contrast information from

the multivariate image via averaging over a 3� 3-pixel

neighborhood around each pixel of the steel surface image.

Thus it can be said that PC1 serves as a smoothing filter on

the original steel surface image.

Upon deflating the X matrix by removing this mean

intensity prediction of the first PC, the second and third PCs

of MIA extract the remaining feature information. Fig. 6a

and b illustrates the second and third PC score images T2

and T3 of the original steel surface image, respectively. A

close observation of the T2 image reveals that the 2nd PC

predominantly extracts horizontal and diagonal edge infor-

mation (i.e. 45j and 135j) with respect to the center of the

image. On the other hand, it can be seen from the T3 score

image that the main feature extracted by PC3 is the vertical

and diagonal surface pit edge information.

The p2 and p3 loading vector coefficients are given in

Table 2b and c, respectively. It can be seen that the second

PC is simply a vertical first derivative filter, and hence will

extract mainly horizontal edge information. Similarly, the

loadings of the third PC shown in Table 2c shows that p3 is

simply a horizontal derivative filter which highlights mainly

the vertical edges of the surface pits as illustrated in the T3

image reconstruction in Fig. 6b. The sum of the loading

coefficients for p1 is approximately 1, and the sum of the

coefficients for both p2 and p3 is approximately 0. This

agrees with the convolution kernels of a low pass smoothing



Fig. 7. (a) Score space of PC12 for bad steel surface quality image; (b) score

space of PC23 for bad steel surface quality image.

Fig. 6. (a) T2 image of bad steel surface quality image; (b) T3 image of bad

steel surface quality image.
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filter and first-derivative edge detection filters in the image

processing literature [1,2,25,35,36].

It can be seen from this example that MIA on spatially

shifted and stacked images automatically allows one to

develop optimal filters as loading vectors based on pixel

intensity variance over a pre-defined neighborhood. In

general, these filters could be much more complex than

the simple smoothing and first-derivative edge detection

filters obtained above. Depending upon the number of pixel

shifts and the chosen spatial direction(s) of shifting, the

MPCA loading vectors could define much more complex

filters, which one might never have anticipated in advance.

These optimal spatial filters could then be used directly for

all subsequent analysis. In this study, up to three shifts in

each direction were tried with different shift intervals, with

no real improvement. Only three significant PCs were still

obtained and the loading vectors of these were essentially

the same as obtained with a single shift, showing that only

the first-derivative filters were needed.

Besides observing the MIA PCs as intensity images

(image space), one could also use scatter plots of score
vectors against each other and observe the pixels as point

clusters (score space) in a color-coded two-dimensional

histogram. Fig. 7 shows the PC12 (t1 vs. t2) and PC23 (t2
vs. t3) score plot of the bad steel surface image.

Further insight of the MIA score space can be gathered

upon interrogating score point clusters using a masking

strategy [37] in the score space to delineate pixels having

similar features and then highlighting the pixels under the

score plot mask in the T1 score image. Fig. 8a illustrates

such a mask (shown as a gray rectangle) in the PC12 score

plot of the training image that captures all pixels having low

t1 values. The corresponding masked pixels have been

highlighted (as white) and overlaid on the T1 score image

(shown in Fig. 8b). This low t1 mask clearly captures all the

deep pits in the image.

Since the second and third PCs have been shown to

represent first-derivative filters in the vertical and horizontal

directions, respectively, the large positive or negative values

of t2 and t3 will correspond to pixel locations where rapid

intensity changes are occurring. Fig. 9a illustrates a mask



Fig. 9. (a) Manually applied mask on PC23 score space of bad steel surface

image; (b) corresponding feature pixels under PC23 mask highlighted (in

white) and overlaid on T1 score image.

Fig. 8. (a) Manually applied mask on PC12 score space of bad steel surface

image; (b) corresponding feature pixels under PC12 mask highlighted (in

white) and overlaid on T1 score image.
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(shown in gray around the central cluster) that highlights

the extreme score combinations in the PC23 score plot of

the training image. The corresponding pixels covered by

this mask have been highlighted (as white) and overlaid on

the T1 image as shown in Fig. 9b. Clearly, this mask

highlights those pixels belonging to the pit edges in the

image.

4.2.2. Classification of steel images using MIA model

features

The MIA model and the score space masks can now be

used to extract similar texture properties from each steel

surface image in the data set and to classify the steel

surfaces. Each new steel surface image is shifted and

stacked and then unfolded in the same way as the training

image, and the PCA model used to obtained score plots

(t1,t2,t3) for that image. Features for classification are then

taken as the count of the total number of pixels falling under

each of the score space masks for each steel surface image.

These features provide an objective measure of image
texture through a count of pixels belonging to pit cores

and pit edges in each steel surface image [38].

Classification can then be achieved by plotting the

respective pixel counts of pit cores and edges against each

other for every image [39] as shown in Fig. 10. Such a plot

produces an appropriate feature space for image classifica-

tion. Steel surfaces depicting similar overall texture charac-

teristics should have (on average) similar feature pixel

counts of pit cores and edges. The abscissa separates

samples representing bad steel surface quality from the

other samples. This trend is expected since the bad surface

quality samples contain mainly deeper pit cores, which

occupy a larger surface area as they are joined together in

‘snake’-like patterns. The ordinate represents derivative

(edge) information, and as seen in Fig. 10, this direction

mainly separates samples in the excellent and good surface

quality from those belonging to medium surface quality. The

above implies that medium quality steel surfaces have a

similar number of deep pit cores as the excellent and good

surface quality surfaces, but have more pit edges than

excellent or good surfaces.



Fig. 10. Steel sample image classification based on surface pits and edges detected by MIA texture analysis strategy.
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In summary, as seen from the manually highlighted

clusters in Fig. 10 (done for visual purposes only), one

can easily separate medium and bad surfaces from the

excellent and good surfaces. However, the excellent and

good surfaces cannot be distinguished from one another.

The proposed MIA-based image texture analysis method

produces better classification results than the earlier dis-

cussed PLS-DA and GLCM approaches. Furthermore, being

inherently multivariate in nature the MIA texture analysis

technique has the added advantage that it can be applied not

just to grayscale images, but also to true color (RGB) and

other multi-spectral images.
5. Transform-based methods for texture classification

5.1. Unsupervised classification using MPCA on 2-D FFT

magnitude images

The two-dimensional Fast Fourier Transform (2-D FFT)

of an image can be thought of as a two-dimensional

representation of the spatial power spectrum of the image.

Theoretical and mathematical details regarding the 2-D FFT

can be obtained from the image-processing literature

[1,2,25,35,36]. Various researchers have proposed the use

of FFT spectra as texture feature descriptors [7] that can be

used for characterizing images based on overall texture [40],

or for multivariate prediction of externally measured textural

data [17].
The approach ‘‘ASUNIM’’ (analysis of a set of univar-

iate images) suggested by Geladi [40] is used in this

section to classify the steel surface images according to

their surface texture. A multivariate image consists of

several congruent variable images. In order to transform

several incongruent grayscale images into a common base,

Geladi suggested converting them into their respective 2-D

FFT magnitude images and stacking them as variables of a

multivariate image. In doing so, the resulting multivariate

image conserves textural frequency information in its

variables. Upon decomposing the multivariate image using

MPCA, classification can be performed in the scatter plots

of the MPCA loading vectors.

The 35 steel surface images in the data set were

transformed into their respective 2-D FFT magnitude

images, followed by stacking them into a (35 variable)

multivariate image. However, prior to stacking, each 2-D

FFT magnitude image was passed through a ‘‘Gaussian’’

filter (9� 9 pixel convolution kernel, with r = 0.5) [35].

This filter serves as a low-pass smoothing function, which

is mainly used to remove traces of high-frequency noise

from the texture images. Further details on the Gaussian

filter and other similar windowing functions may be found

in Jenkins and Watts [41]. Finally, each of the 35 2-D FFT

magnitude images was cropped. Only the right half was

used since the left half was a symmetric mirror of the right

half.

99.78% of the total variation of multivariate image

X was explained by the first three PCs (PC1 = 99.76%;



Fig. 11. Steel surface image classification using MPCA on 2-D FFT magnitude of steel images.
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PC2 = 0.014%; PC3 = 0.011%). The first PC explains the

average magnitude information in the variable images of

X, whereas contrast differences between the variables (i.e.,

images) is emphasized by subsequent PCs. Keeping this

in mind, the loading space of PC2 and PC3 is used to

discriminate the 35 variable images of X . Upon scatter
Fig. 12. Two-dimensional discrete wavelet transform implemented by a separable t

consists of a cascade of horizontal (indicated as row) vertical (indicated as col) fi

called horizontal (h) vertical (v) and diagonal (d), respectively.
plotting, the p2 loading coefficients of the 35 variable

images against those of p3, each image is represented as a

single point in the feature space. The resulting point

clusters in the feature space may then be used to test

the achieved classification of the steel surface images.

Fig. 11 illustrates the results of this unsupervised classi-
wo-dimensional filter bank (only the jth decomposition stage shown here). It

ltering. Since this results in strong directionality, three detail subimages are
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fication scheme. Images exhibiting similar spatial frequen-

cy patterns of steel surface roughness are grouped togeth-

er to form a class.

According to the manually highlighted classes in Fig.

11 (done for visual purposes), it can be seen that the

achieved classification using the above strategy is better

than those of GLCM and direct PLS-DA, but not as good

as that based on MIA of the shifted and stacked images.

The bad surfaces are well separated, but there is no clear

separation of the others (although the excellent ones are

reasonably well clustered).
Fig. 13. The reconstructed sub-images of steel sample B12 f
5.2. Texture classification using wavelet texture analysis

(WTA)

Whereas the 2-D FFT performs a frequency decompo-

sition of an image, the Gabor transform and 2-D wavelet

transform perform a space-frequency decomposition, which

is more suitable for texture analysis. The wavelet transform

is preferred to the Gabor transform in the respect that the

wavelet transform can maintain good space and frequency

localization when discretized [42,43]. For these reasons, a

wavelet-based method, which is often called wavelet
or the 5 details (D1–D5) and the approximation (A5).



Fig. 14. The WTA energy distribution of steel images. Top-E02, middle-

M06, bxottom-B12.
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texture analysis (WTA), is considered to be the current

state of the art among other texture analysis methods and

also has shown better performance than other methods in

many cases [5].

A basic idea of WTA is to generate a textural feature

from wavelet coefficients at each resolution. Then it is

assumed that each texture has its unique distribution of

features at all resolutions. Therefore, if the frequency

spectrum is decomposed appropriately, different texture will

have different features. Denote by d( j)
k ( j= 1, 2, . . . , J;

k = h,v,d) the k-component of the detail sub-images of a

grayscale image at the jth decomposition stage, where h, v,

and d denote horizontal, vertical, and diagonal, respectively,

as shown in Fig. 12. When each detail sub-image is treated

as a matrix, then the energy of the detail sub-image is

defined as

Ejk ¼ NdkðjÞN
2
F ð7Þ

where N�NF denotes the Frobenius norm. Often this is

divided by the number of pixels, yielding normalized

energy. When these energies are employed as elements of

the textural feature vector, it is called the wavelet energy

signature [6], which is the most popular feature used in

WTA. Other popular textural features are entropy or aver-

aged l1-norm. The size of the energy signature is then 3J ( J

is the number of decomposition stages) for a grayscale

image. The variations induced by lighting or illumination

are usually captured in the approximation sub-image and

thus it is generally not included. Based on this idea, many

publications on WTA have appeared [4–6,20–22]. Since

mean values of detail coefficients or sub-images are equal to

zero [21], the wavelet energy signatures are equal to channel

variances when divided by the number of pixels. In addi-

tion, the entropy signatures are equivalent to high-order

moments of pixel values.

For WTA of the steel surfaces, each image was decom-

posed to the fifth stage using orthogonal Coiflet wavelet

with a 6-tap filter, which is orthogonal and nearly symmetric

[44]. For the choice of the wavelets, we followed the general

guidelines given in Ref. [45]. Based on experience, we

selected the number of decomposition stages such that the

size of the smallest sub-image was greater than 10� 10.

This criterion is similar to that of Ref. [20].

To illustrate why WTA is a very effective tool for texture

analysis, the reconstructed images for each of the five detail

stages and the approximation are shown in Fig. 13 for the

bad steel sheet sample B12 in Fig. 1d. To accomplish this,

the three reconstructed detail sub-images (horizontal, verti-

cal, and diagonal) at each decomposition stage are added to

give one reconstructed detail sub-image.

The very informative nature of WTA is clearly apparent

in the sub-images in Fig. 13. The image D1, which

corresponds to the detail sub-image with highest spatial

frequency, has very fine bright and dark dots and they are

evenly distributed. The size of features (dots) in the sub-
images gets progressively bigger as one moves from D1 to

D5. The approximation sub-image A5 captures the average

lighting intensity variation across the image including all the

ink smudge marks (compare with the original image in Fig.

1d). Clearly, these features in A5 are unrelated to the

important textural differences among the samples and

should be omitted from the analysis. Omitting approxima-

tion coefficients (A5) is equivalent to performing powerful

high-pass filtering of the image data. When comparing

images D1–D5 with the original image Fig. 1d, one can

easily note that dark spots in the reconstructed detail sub-

images correspond to the pits in the original image; D1 and

D2 have very small pits and D5 and D4 have big and deep

pits. Then, it can be expected from the explanation of

surface qualities in Section 2 that excellent surfaces will

have larger energy signature in the details D1 and D2

whereas bad surfaces will have larger energy signatures in

the details D4 and D5.

To illustrate this, frequency distributions of the energy

signatures for the five details of three images in Fig. 1 are

shown in Fig. 14 by plotting the energy vs. frequency (D5,

. . ., D1). Again, energies of three detail sub-images (h,v,d)

at each decomposition stage are summed for illustration.

The shift in the energy distribution from D1 towards D5 as

one moves from the excellent sheet to the bad one is clearly

evident. Also evident are the lower energy values at all

scales for the excellent sample.



Fig. 15. Unsupervised classification of steel surface images using PCA score plot (t1 vs. t2) of wavelet energy signature.
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Classification is performed using the energies of all the

detail sub-images as textural features. Thus, the dimension

of a feature vector is 15 ( = 3*J). PCA and PLS-DA are

then used as a clustering and a classification method. The

number of significant components determined by cross-

validation was five, which is equal to the number of

decomposition stages. However, the class representations

are easily seen in the score plot of the first two compo-

nents (t1 vs. t2) shown in Fig. 15. This wavelet texture

analysis approach is the only one among the approaches

discussed in this paper that provided clear separation lines

to be drawn among the classes. It also shows the expected

progressive behavior between the good and excellent

classes while other approaches failed to show that. The

PLS-DA t1 vs. t2 score plot is nearly as same as the PCA

score plot.
6. Conclusions

Several approaches to image texture analysis are over-

viewed and are used to classify a set of industrial rolled

steel sheet samples into various quality grades. Some of

the strengths and weaknesses of the different methods

become apparent in the discussion of the methodology

and in the application to the steel sheet classification. The

older, more traditional statistical approaches, represented

by the GLCM method in this paper, appear to have been
supplanted by more recent approaches based on multivar-

iate image analysis and, in particular, by wavelet texture

analysis.

The use of multivariate classification approaches such as

PLS discriminant analysis applied to directly to the image

data are shown to fail because of the loss of spatial identity

of the pixels (variables) in those approaches, and because of

the lack of congruency of the images. The congruency

problem can be overcome by working with the 2-D FFT

of the images rather than the raw image themselves. The 2-

D FFT also captures some of the spatial frequency variations

in the image, and multivariate image analysis (MIA) meth-

ods based on multi-way PCA can then be used to classify

the textural information in the images. An alternative

approach to regain spatial information is to create several

versions of each image using different spatial filters, and to

use MIA to analyze the expanded set of multivariate images.

A new alternative, proposed in this paper, is to use spatially

shifted versions of the image and analyze the stacked

images by MIA. The latter approach is also shown to

provide a way of optimally selecting spatial filters for

texture analysis.

Wavelet texture analysis (WTA) methods currently ap-

pear to be the most powerful approach to image texture

analysis. Two dimensional wavelet transforms perform a

space-frequency decomposition which is more suitable than

the frequency only decomposition provided by the 2-D FFT.

The ability to selectively filter out features such as lighting
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intensity variations and smudges from the analysis by

removing the low-frequency approximation sub-image or

other relevant detail sub-images also makes this approach

more flexible and powerful.

The steel sheet image set, used in this paper to illustrate

the various methods, gives insight into the methods, and

provides a reasonable comparison of their strengths and

weaknesses.
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