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3D Printing

How does it work?
• creates objects by laying down successive layers of material until
the object is created

Benefits
• can directly build geometrically complex products with computer
control
• less material and lower cost than traditional manufacturing
methods
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Problem Description

An optimization bottleneck
Material solidification in the printing process yields geometric shape
deviation.
Traditionally, this problem is solved by manual inspection - works
but inefficient.
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Objectives

• Develop methods to extract spatiotemporal patterns from the
measurement images to characterize printed parts quality

• Build a predictive model for part quality given process
parameters
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Project Timeline

Image data
measurements

Image fusion
and feature
extraction

Predictive
model building

Week 1 Week 2-4 Week 5-8

Alex Xiaotong Gui, Pomona College Xinru Liu, Wheaton College Mentor: Dr. Weihong Grace Guo DIMACS



Preliminary Work

• Image data measurements.
Use Keyence VR-3000 Wide-Area 3D Measurement system to
measure the parameters from the surfaces of the 3D-printing object.

Figure 1: Measurement of point height of a dome object of layer thickness 0.1mm
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Feature Extraction

The core question: how do we measure quality?

Method 1: Build a geospatial model based on physical properties
Potential features: material texture, roughness, gradients
Advantage: interpretability
Disadvantage: the features might be incomprehensive
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Feature Extraction

Method 2: Data driven approaches

Our data: for each sample, discretize the image domain (for example
100× 100) and extract the average height of each area.
For n samples, we will have a 100× 100× n tensor of heights data.

We will then deploy tensor decomposition technique to extract
features of lower dimension.

Advantage: comprehensiveness
Disadvantage: not really interpretable
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Tensor decomposition

• Tensors: geometric objects that describe linear relations
between geometric vectors, scalars, and other tensors. It
generalizes matrices to higher dimensions.

e.g.

Figure 2: rank 3 tensor

• Tensor Decomposition: any scheme for expressing a tensor as a
sequence of elementary operations acting on other, often
simpler tensors.
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Multilinear Principal Component Analysis (MPCA)

• PCA: Unsupervised linear technique for dimensionality
reduction.

Limitation: fails to take into account the spatial correlation of
the image pixels within a localized neighborhood.

• MPCA: a multilinear algorithm performing dimensional
reduction in all tensor modes seeking those bases in each
mode that allow projected tensors to capture most of the
variation present in the original tensors.
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Predictive Model
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Potential Challenges

• Unique sample, not many references to compare

solution: Create data from simulation.
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