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In many quality control applications, use of a single (or several distinct) quality
characteristic(s) is insufficient to characterize the quality of a produced item. In
an increasing number of cases, a response curve (profile) is required. Such profiles
can frequently be modeled using linear or nonlinear regression models. In recent
research others have developed multivariate T 2 control charts and other methods for
monitoring the coefficients in a simple linear regression model of a profile. However,
little work has been done to address the monitoring of profiles that can be represented
by a parametric nonlinear regression model. Here we extend the use of the T 2 control
chart to monitor the coefficients resulting from a parametric nonlinear regression
model fit to profile data. We give three general approaches to the formulation of the
T 2 statistics and determination of the associated upper control limits for Phase I
applications. We also consider the use of non-parametric regression methods and
the use of metrics to measure deviations from a baseline profile. These approaches
are illustrated using the vertical board density profile data presented in Walker and
Wright (Comparing curves using additive models. Journal of Quality Technology
2002; 34:118–129). Copyright c© 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In statistical process control (SPC) applications, manufactured items are sampled over time and quality
characteristics are measured. Often a product’s quality can be determined through measuring several
characteristics at each sampling interval. Multivariate T 2 control charts and other methods have been

developed for this scenario see, e.g., Fuchs and Kenett1 and Mason and Young2. Increasingly, however, a
sequence of measurements of one or more quality characteristics are taken across some continuum producing a
curve or surface that represents the quality of the item. This curve or surface is referred to as a profile. Woodall
et al.3 gave an introductory overview of the emerging field of profile monitoring.
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Profile data consist of a set of measurements with a response variable y and one or more explanatory
variables xj , j = 1, . . . , k, which are used to assess the quality of a manufactured item. For example, the
density profile of a particleboard is measured on a vertical cross-section, which reveals patterns in board density
across the depth of the board. Another example is the estimated dose-response curve of a manufactured drug.
Once a batch of the drug is produced, several different doses of the drug are administered to subjects and the
responses measured. The resultant dose-response curve summarizes the quality of the particular batch of the
drug, indicating the maximal effective response, minimal effective response, and the rate in which the response
changes between the two (see Williams et al.4). In these examples, a single measurement is insufficient to
adequately assess quality. Instead, a relationship between two variables, referred to as the profile, should be
monitored over time. Profile data is multivariate, but it is not appropriate to apply standard multivariate control
chart methods since this leads to overparameterization. It is more efficient to model the structure of the data via
regression techniques.

In Phase I analysis, we are concerned with distinguishing between in-control conditions and the presence of
assignable causes so that in-control parameters may be estimated for further product or process monitoring in
Phase II analysis. If out-of-control observations are included in the estimation of in-control parameters, then
the subsequent monitoring procedure will be less effective. Therefore, it is imperative in Phase I that abnormal
profiles be identified and excluded from further analysis. Furthermore, we seek to identify step or ramp shifts
(if any) in the mean profile, so that in-control parameters may be estimated to reflect what would be expected
from a stable process.

Profiles can take on several different functional forms, depending on the specific application. For many
calibration problems, the profile can be represented by a simple linear regression model (see, e.g., Mahmoud
and Woodall5 and Gupta et al.6). Kang and Albin7 proposed two methods, including a multivariate T 2 control
chart, to monitor such profiles. Specifically, we let the subscript i index each individual profile (i = 1, . . . , m)

in the historical Phase I data. In the simple linear regression case, the ith profile is modeled as

yij = βi0 + βi1xij + εij

where yij is the j th measurement (j = 1, . . . , n), εij is the j th random error, and xij is the j th value of the
explanatory variable corresponding to the ith profile. It is assumed that the values of xij are the same for all i.
This assumption is often reasonable since in many engineering applications the product or process profiles are
measured at fixed values of the explanatory variable at each sampling stage. Kang and Albin’s7 multivariate T 2

chart is used to monitor simultaneously β0, the y-intercept, and β1, the slope. Kim et al.8 proposed an alternative
approach with better statistical properties such that individual control charts can be used for the y-intercept and
slope independently.

In general, we refer to any profile that can be modeled by the linear regression function

yij = βi0 + βi1xij1 + βi2xij2 + · · · + βikxijk + εij (1)

as a linear profile, where xijl, l = 1, . . . , k, are k predictor variables. The predictor variables can be the original
variables themselves or any function of the variables. In matrix notation, we let yi = [yi1, yi2, . . . , yin]′ be
the vector of responses for profile i, βi = [βi0, βi1, . . . , βik]′ be the vector of parameters to be monitored,
x′
ij = [1, xij1, xij2, . . . , xijk] be the vector of explanatory variables for item i, and εi = [εi1, εi2, . . . , εin]′

be the corresponding vector of random errors. After collecting the x′
ij vectors into an n × p matrix, where

p = k + 1, as

Xi =

⎡⎢⎢⎢⎣
x′
i1

x′
i2
...

x′
in

⎤⎥⎥⎥⎦
model (1) can be written in matrix form as

yi = Xiβi + εi , i = 1, . . . , m

Copyright c© 2007 John Wiley & Sons, Ltd.
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We assume that Xi is the same for each profile and that the vectors εi are independent and identically distributed
(i.i.d.) multivariate normal random vectors with mean vector zero and covariance matrix σ 2I. For an example of
profile monitoring where the covariance matrix is allowed to take on a more general form, see Williams et al.4.

Jensen et al.9 proposed a control chart based on the F -distribution to monitor the k + 1 parameters
(coefficients) from a multiple linear regression model for Phase II applications. Given the parameter vector
estimator for item i, β̂i , and the target parameter vector β0, one plots on their control chart the well-known F

statistic

Fi = (β̂i − β0)
′X′

iXi (β̂i − β0)/(k + 1)s2
i

against i, where s2
i = ∑n

i=1(yi − ŷ)2/(n − p). A Phase I procedure for this general linear case has yet to be
developed.

In many cases, however, profiles cannot be well-modeled by a linear regression function. Walker and Wright10

proposed a non-parametric approach for comparing profiles using additive models. Such models do not have a
specific functional form and have no model parameters to estimate, but rather one employs smoothing techniques
such as kernal smoothing or spline smoothing to model a profile. Non-parametric regression techniques provide
great flexibility in modeling the response. One disadvantage of non-parametric smoothing methods is that the
subject-specific interpretation of the estimated non-parametric curve may be more difficult, and may not lead
the user to discover as easily assignable causes that lead to an out-of-control signal. Ding et al.11 proposed an
alternative nonlinear profile monitoring method based on a two-stage process of: (1) data reduction from a high-
dimensional space to a lower-dimensional subspace, and (2) employing the control charts methods described in
Sullivan12.

Often, however, scientific theory or subject-matter knowledge leads to a natural nonlinear function that well
describes the profiles. Hence, an alternative method is to model each profile by a nonlinear regression function.
A nonlinear profile of an item can be modeled by the nonlinear regression model given generally by

yij = f (xij , βi ) + εij (2)

where xij is a k × 1 vector of regressors for the j th observation of the ith profile, εij is the random error, β i

is a p × 1 vector of parameters for profile i, and f is nonlinear in the parameters. The random errors εij are
assumed to be i.i.d. normal random variates with mean zero and variance σ 2. In many applications, there is
only one regressor (k = 1), but there are multiple parameters to monitor (p > 1). An example of this form of the
model is the four-parameter logistic model, often used to model dose-response profiles of a drug, given by

yij = Ai + Di − Ai

1 + (xij /Ci)Bi
+ εij (3)

where yij is the measured response of the subject exposed to dose xij for batch i, i = 1, . . . , m, j = 1, . . . , n.
In Equation (3), we have k = 1 and p = 4, giving four parameters to monitor, each parameter having a specific
interpretation. For example, Ai is the upper asymptote parameter, Di is the lower asymptote parameter, Ci is
the ED50 parameter (the dose required to elicit a 50% response), and Bi is the rate parameter for the ith batch.
Another example is the ‘bathtub’ function described in Section 3 where the density of particleboard is measured
across the vertical profile. Note that for any given application, the specific form of the nonlinear function, f , in
Equation (2) must be specified by the user.

In Section 2 of this paper we give a brief review of nonlinear regression. We introduce the multivariate T 2

statistic in the context of monitoring nonlinear profiles. We then introduce three formulations of the T 2 statistic
and discuss the determination of the upper control limits (UCLs) for the corresponding charts. In addition,
a control chart to monitor the variance σ 2 in the context of monitoring profile data is proposed. Finally, we
discuss a non-parametric regression approach to monitoring the profiles. In Section 3 we illustrate the T 2

control charts and the non-parametric approaches using the vertical density profile data of Walker and Wright10.
In Section 4 we discuss the effects that autocorrelation in the error terms may have on the analysis. Finally, in
Section 5 we discuss potential alternative methods and give directions for future research topics in nonlinear
profile monitoring.

Copyright c© 2007 John Wiley & Sons, Ltd.
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2. METHODOLOGY

We begin a Phase I analysis with a baseline dataset consisting of m items sampled over time. For each item
i we observe a response yij and a set of predictor variables xij , i = 1, . . . , m, j = 1, . . . , n, resulting in the
quality profile for item i, i.e. (yi1, xi1), (yi2, xi2), . . . , (yin, xin). In this section we develop the methodology
to analyze the profiles to gain understanding of the product or process in a Phase I setting.

2.1. Nonlinear model estimation

For simplicity of notation, we write the scalar model given in Equation (2) in matrix form by stacking
the n observations within each profile as yi = (yi1, yi2, . . . , yin)

′, f(Xi , βi ) = (f (xi1, βi ), f (xi2, βi ), . . . ,

f (xin, βi ))
′, and εi = (εi1, εi2, . . . , εin)

′. The vector form is then given by

yi = f(Xi , βi ) + εi , i = 1, . . . , m (4)

For the nonlinear regression model given in Equation (4), estimates of βi for each sample must be obtained.
This is usually accomplished by employing the Gauss–Newton procedure and iterating until convergence to
obtain the maximum likelihood estimates. Upon convergence of the algorithm, the estimated covariance matrix
of β̂i is the estimated Fisher information matrix. See Myers13 or Schabenberger and Pierce14 for a concise
discussion of nonlinear regression model estimation. A more detailed treatment can be found in Gallant15 and
Seber and Wild16.

Unlike linear regression, the small-sample distribution of parameter estimators in nonlinear regression is
unobtainable, even if the errors εij are assumed to be i.i.d. normal random variables. Instead, asymptotic results
must be applied. Seber and Wild16 give the asymptotic distribution of β̂i and the necessary assumptions and
regularity conditions for the asymptotic distribution to be obtained.

2.2. Multivariate T 2 control chart

In order to develop the methodology to monitor nonlinear profiles, we first consider the general framework
of the multivariate T 2 statistic. Given a sample of m independent observation vectors to be monitored, wi

(i = 1, . . . , m), each of dimension p, the general form of the T 2 statistic in Phase I for observation i is

T 2
i = (wi − w̄)′S−1(wi − w̄) (5)

where w̄ = (1/m)
∑m

j=1 wi and S is some estimator of the variance–covariance matrix of wi (Mason and

Young2). We then plot the T 2
i statistics, i = 1, . . . , m, against i and out-of-control signals will be given for any

T 2
i value exceeding an UCL. For determining the statistical properties of the T 2-chart it is usually assumed that

each of the wi vectors follows a multivariate normal distribution with common mean vector μ and covariance
matrix �. This assumption is critical to finding the marginal distribution of T 2

i , as discussed in Section 2.3.
In the nonlinear regression model given in Equation (2), βi is a p × 1 vector of parameters that determines the

curve f (Xi , βi ). We employ the multivariate T 2 statistic to assess stability of the p parameters simultaneously,
i.e. to evaluate the assumption βi = β, i = 1, . . . , m. We do not employ individual control charts for each
of the p nonlinear regression parameters since this may give misleading results due to the built-in correlation
structure of the parameter estimators in nonlinear regression.

Once β̂ i is obtained from each sample in the baseline dataset, we calculate the average vector ¯̂
β and some

corresponding estimate of the covariance matrix, replace wi with β̂i and w̄ with ¯̂
β in Equation (5) to obtain

T 2
i = (β̂i − ¯̂

β)′S−1(β̂i − ¯̂
β)

A large value of T 2
i indicates an unusual β̂i , suggesting that the profile for item i is out-of-control. In contrast

to the traditional use of the T 2 statistic to monitor a multivariate quality characteristic vector, we employ the T 2

statistic to monitor the coefficient vectors of the nonlinear regression fit to each individual profile.

Copyright c© 2007 John Wiley & Sons, Ltd.
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There are several choices for the estimator S. Here we discuss the effects of three choices and later discuss
under what conditions, if any, each should be used.

The first choice we consider for S is the sample covariance matrix, given by

SC = 1

m − 1

m∑
i=1

(β̂i − ¯̂
β)(β̂ i − ¯̂

β)′

Consequently, the T 2
i statistics take on the form

T 2
C,i = (β̂i − ¯̂

β)′S−1
C (β̂ i − ¯̂

β) (6)

Use of the T 2
C values was mentioned by Brill17 in the context of monitoring nonlinear profiles of a chemical

product. The advantage of this statistic is that it is very well understood and widely used. However, as was
shown by Sullivan and Woodall18 and Vargas19, a T 2 statistic based on SC is ineffective in detecting sustained
shifts in the mean vector during the Phase I period. In fact, it was shown that as the step shift size increased, the
power to detect the shift actually decreased.

An alternative choice of S is one based on successive differences, proposed originally by Hawkins and
Merriam20 and later by Holmes and Mergen21. To obtain the estimator, we define v̂i = β̂i+1 − β̂i for i =
1, . . . , m − 1 and stack the transpose of these m − 1 difference vectors into the matrix V̂ as

V̂ =

⎡⎢⎢⎢⎣
v̂′

1
v̂′

2
...

v̂′
m−1

⎤⎥⎥⎥⎦
The estimator of the variance–covariance matrix is

SD = V̂′V̂
2(m − 1)

Sullivan and Woodall18 showed that SD is an unbiased estimator of the true covariance matrix if the process is
stable in Phase I. The resulting T 2

i statistics are given by

T 2
D,i = (β̂i − ¯̂

β)′S−1
D (β̂i − ¯̂

β) (7)

Sullivan and Woodall18 and Vargas19 showed that a T 2 chart based on values of T 2
D,i was effective in detecting

both a step and ramp shift in the mean vector during Phase I. Sullivan and Woodall18 also showed that the T 2
D

values are invariant to a full-rank linear transformation on the observations.
Our third choice for S is a robust estimator of the variance–covariance matrix known as the minimum volume

ellipsoid (MVE) estimator, first proposed by Rousseeuw22 and studied in profile monitoring for Phase I analysis
by Jensen et al.23. In our application of the MVE method, we find outlier-robust estimates for both the in-
control parameter vector and the variance–covariance matrix based on finding the ellipsoid with the smallest
volume that contains at least half of the β̂i vectors, i = 1, . . . , m. The MVE estimator of β is the mean vector
of the smallest ellipsoid, and the estimator of the variance–covariance matrix is the sample covariance matrix
of the observations within the smallest ellipsoid multiplied by a constant to make the estimator unbiased for
multivariate normal data. In a simulation study, Vargas19 studied the power properties of several different choices
of S in the context of the T 2 statistic given in Equation (5) and found that the T 2 statistic based on the MVE
estimators of β and the variance–covariance matrix was very powerful in detecting multivariate outliers. We
denote the MVE estimators of β and the covariance matrix by β̂MVE and SMVE, respectively. Hence, the fourth
choice of T 2 is

T 2
MVE,i = (β̂i − β̂MVE)′S−1

MVE(β̂i − β̂MVE), i = 1, . . . , m (8)

Copyright c© 2007 John Wiley & Sons, Ltd.
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2.3. Control limits

The distribution of the T 2
i statistics for monitoring nonlinear profiles is more complex than in the linear profile

case. Recall that the distribution of the parameter estimators in nonlinear regression is difficult to obtain for
small sample sizes. Instead we employ the asymptotic distribution (as n → ∞) of β̂ i , i = 1, . . . , m. Hence, in
order to determine the marginal distribution of T 2

i in this case, we assume that the sample size, n, from each item

in the baseline data set is of sufficient size such that the distributions of β̂i , i = 1, . . . , m are approximately
multivariate normal. The subsequent UCLs for the multivariate T 2 control charts are determined based on this
normality assumption.

In order to control the overall probability of a false alarm, based on some appropriate UCL, the joint

distribution of the T 2
i values is required. However, these values are correlated since ¯̂

β and S are used in all
T 2

i statistics (i = 1, . . . , m) and thus making the joint distribution of the T 2
i values difficult to obtain. As an

alternative, Mahmoud and Woodall5 suggested using an approximate joint distribution assuming that the T 2
i

statistics are independent. We let α be the probability of a false alarm for any individual T 2
i statistic. Then the

approximate overall probability of a false alarm for a sample of m items is given by αoverall = 1 − (1 − α)m.
Thus, for a given overall probability of a false alarm, we use α = 1 − (1 − αoverall)

1/m in the calculation of
UCLs. In their simulation study, Mahmoud and Woodall5 found that this approximation used to determine the
UCLs performed well.

As noted in Tracy et al.24, Gnanadesikan and Kettenring25 proved that for a stable process the marginal
distribution of T 2

C,i is proportional to a beta distribution, i.e.

T 2
C,i

m

(m − 1)2
∼ B

(
p

2
,

m − p − 1

2

)
A formal proof can be found in Chou et al.26. Note that it is assumed that the distribution of β̂i is approximately
normal. Therefore, an approximate UCL is

UCLC = (m − 1)2

m
B1−α,p/2,(m−p−1)/2 (9)

where B1−α,p/2,(m−p−1)/2 is the 1 − α quantile of a beta distribution with shape parameters p/2 and
(m − p − 1)/2.

The marginal distribution of the T 2
D,i statistic is unknown. However, Williams et al.27 gave an approximate

distribution based on the chi-squared distribution for large sample sizes and an approximate distribution based
on the beta distribution for small sample sizes. For large sample sizes, defined by m > p2 + 3p, the UCL is
given by

UCLD = χ2(1 − α, p)

For small sample sizes, defined by m ≤ p2 + 3p and p < 10, the UCL is a vector given by

UCLD = (UCL1, UCL2, . . . , UCLm) (10)

where

UCLi = MV (m, i)BETA1−α,β(m,p,i),γ (m,p,i), i = 1, . . . , m

and β(m, p, i) and γ (m, p, i) are functions of m, p, and i that define the two shape parameters for the
beta distribution. The specific forms of β(m, p, i) and γ (m, p, i) given by Williams et al.27, are included
in Appendix A.

The exact marginal distribution of T 2
MVE,i is also unknown and intractable. Hence, in order to find the UCL

for T 2
MVE,i we used simulation.

Copyright c© 2007 John Wiley & Sons, Ltd.



931

Qual. Reliab. Engng. Int. 2007; 23:925–941
DOI: 10.1002/qre

STATISTICAL MONITORING OF NONLINEAR PRODUCT AND PROCESS QUALITY PROFILES

2.4. Monitoring the variance

In addition to checking the stability of each profile in the baseline dataset, it is important to check the stability
of the variability about each profile. This is analogous to monitoring the process variance in the standard
univariate case. In the case of monitoring profiles, we seek to monitor the variability about each profile,
or the within-profile variability. Our measure of within-profile variability is the mean squared error (MSE)
defined as MSEi = ∑n

j=1(yij − ŷij )
2/(n − p), where ŷij is the predicted value of yij based on the nonlinear

regression model in Equation (2). Wludyka and Nelson28 recommended a method to monitor variances based
on an analysis-of-means-type test utilizing S2

i = MSEi . In their paper, S2
i is plotted against i with associated

lower control limits (LCLs) and UCLs equal to (Lα,m,n−p)mS2 and (Uα,m,n−p)mS2, respectively, where L

and U are critical values given in their paper and S2 is the average of the S2
i values, i = 1, . . . , m. For large

n, their approximate UCLs and LCLs are S2 ± hα,m,∞σ̂ where h is a critical value given in Nelson29 and

σ̂ = S2
√

2(m − 1)/m(n − p). The S2
i statistics are plotted on a separate control chart to monitor the variance

of the error terms and lack of fit simultaneously with a T 2 control chart for the nonlinear regression parameters.
We recommend use of this method when within-profile error terms are independent.

2.5. Non-parametric approach

When a parametric form of a profile would be overly complex, non-parametric procedures may be more
appropriate. These include fitting each profile via some smoothing method, such as local polynomial regression,
spline smoothing, or wavelets. Walker and Wright10 gave a spline-fitting approach to the vertical density
profile (VDP) of particleboard, which we use as an illustration in Section 3. However, these authors discussed
using splines to assess variation, not to monitor profiles in a Phase I analysis to check for process stability.
Winistorfer et al.30 illustrated the use of splines to model the VDP of oriented strandboard generated from
a 32 factorial design with three replicates. However, their spline-fitting method is used in the context of
comparing profiles among differing experimental conditions, not monitoring profiles in a Phase I or Phase II
analysis.

For the case of a single explanatory variable, we denote the non-parametric fit of profile i by ẏij , for the
corresponding value of the explanatory variable equal to xj , j = 1, . . . , n. The general non-parametric approach
to monitoring profiles in Phase I analysis is to establish a ‘baseline’ curve with which to compare all other
curves. A natural choice of baseline profile is the average estimated profile across all m profiles, denoted by
ỹj = ∑m

i=1 ẏij /m, j = 1, . . . , n. Once a baseline curve is found, some appropriate distance metric can be used
to measure how ‘different’ each individual curve is from the baseline. Researchers at Boeing31 proposed the
following three metrics:

1. Mi1 = sign(maxj |ẏij − ỹj |);
2. Mi2 = ∑n

j=1 |ẏij − ỹj |;
3. Mi3 = ∑n

j=1 |ẏij − ỹj |/m.

The three metrics, Mi1, Mi2, and Mi3, are referred to as the maximum deviation, sum of absolute deviations, and
the mean absolute deviation, respectively. Furthermore, it may be of interest to compute the absolute value of
Mi1, which obviously reflects the magnitude of the dissimilarity between ẏij and ỹj disregarding the direction
of dissimilarity. We denote this metric by Mi4. Other metrics are proposed in Gardner et al.32, who noted that
metrics can be defined to detect changes in profiles resulting from particular known process faults. One of
these metrics is the sum of squared differences between each estimated profile and the average profile, denoted
Mi5 = ∑n

j=1(ẏij − ỹj )
2. For a given metric, one plots the metric value for profile i against i (i = 1, . . . , m)

and checks for unusual observations. Researchers at Boeing31 suggested using a standard univariate I -chart on
the metrics to establish control limits. The method of smoothing splines with several dissimilarity metrics is
illustrated in Section 3.

Copyright c© 2007 John Wiley & Sons, Ltd.
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Figure 1. VDP of 24 particleboards

3. EXAMPLE

In this example to illustrate the application of the various approaches we use the vertical density profile
data from Walker and Wright10, available at http://filebox.vt.edu/users/bwoodall/VDP%20nonlinear%20profile
%20data.txt. In the manufacture of particleboard, the density properties of the finished boards are quality
characteristics that are monitored through time. It is well known that the density (in lbs ft−3) near the core
of a particleboard is much less than the density at the top and bottom faces of a board (see Young et al.33).
The standard sampling procedure calls for a laser-aided density measuring device to scan fixed vertical depths
of a board and record the density at each depth. Since the depths are fixed for each board, we denote the
depth xij by simply xj . Density measurements for this dataset were taken at depths of xj = (0.002)j in, j =
0, 1, 2, . . . , 313. Correspondingly, a sequence of ordered pairs, (xj , yij ), j = 1, . . . , n, results for board i and
forms a VDP of the board. A baseline sample of 24 particleboards was measured in this way, and the 24 profiles
are illustrated in Figure 1.

Young et al.33 introduced a statistical method to monitor VDP data. With their method, one summarizes the
density measurements into three average density measurements: one near the core and one near each face. The
three averages are the quality characteristics that are subsequently monitored using a standard multivariate T 2

control chart. With this method one basically summarizes each nonlinear profile into only three numbers with a
corresponding loss of information.

An alternative approach without such a considerable loss of information is to model the profiles themselves
parametrically. The nonlinear function we use to model profile i is a ‘bathtub’ function given by

f (xij , β) =
{

a1(xij − c)b1 + d, xj > c

a2(−xij + c)b2 + d, xj ≤ c
i = 1, . . . , m; j = 1, . . . , n (11)

Copyright c© 2007 John Wiley & Sons, Ltd.
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Figure 2. ‘Bathtub’ function fit to board 1

where β = (a1, a2, b1, b2, c, d). One advantage of this nonlinear model is the interpretability of the model
parameters. For example, a1, a2, b1, and b2 determine the ‘flatness’, c is the center, and d is the bottom, or the
‘level’ of the curve. Differing values of a1 and a2 or different values of b1 and b2 allow for an asymmetric curve
about the center c. Figure 2 contains the ‘bathtub’ function fit to board 1 from the VDP data.

The profile of board 1 is well modeled by this parametric fit (R2 > 0.9999). For each of the 24 boards in the
baseline sample we fit the nonlinear model in Equation (11), and calculated the T 2

C , T 2
D, and T 2

MVE statistics of

Equations (6), (7), and (8), respectively, based on the β̂i values. Parameter estimates for each of the 24 boards
and the corresponding T 2 statistics are given in Table I. We plot the six parameter estimates for each of the 24
boards in Figure 3.

The control limits for the T 2
C , T 2

D statistics are calculated from Equations (9) and (10), respectively. We
simulated the UCL for the T 2

MVE statistic to achieve an overall probability of a signal equal to 0.05 for m = 24
boards. In our simulation, we sampled from a multivariate normal distribution of dimension six, mean vector
zero, and variance–covariance matrix I , since the in-control performance of the methods does not depend on
the assumed in-control parameter vector or the variance–covariance matrix. We repeated our simulation 200 000
times, giving a standard error for the estimated control limits less than 0.0005. The UCL values are 14.72 and
65.37, for the T 2

C and T 2
MVE control charts, respectively, and the control limit vector for the T 2

D control chart is
given in Table I.

In Phase I analysis, we are interested in identifying ‘outlying’ or out-of-control boards or a shift in the process
which might affect the estimation of in-control parameters. We compared the four T 2 control charts for assessing
process stability and identifying outlying profiles. In Figure 4 we illustrate all four T 2 control charts for the VDP
data.

Both the T 2
C and the T 2

D control charts indicate that board 15 has the only out-of-control profile, although the
profile for board 18 is borderline. Note that the T 2

D statistic accentuates the same outlying observations of the
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Table I. Estimated parameter values and T 2 statistics for the VDP data

Board â1 â2 b̂1 b̂2 ĉ d̂ T 2
C T 2

D T 2
MVE UCLD

1 6560 3259 5.63 4.40 45.98 0.29 2.65 1.91 6.00 27.88
2 470 291 3.01 2.74 42.08 0.32 7.56 5.27 6.97 22.29
3 1812 2871 3.99 5.02 47.66 0.34 5.83 7.17 8.64 22.27
4 6171 15 009 4.25 7.39 46.63 0.39 12.21 17.28 1131.81 22.24
5 4963 2251 5.14 4.20 43.43 0.30 1.65 2.27 2.88 22.21
6 4556 3758 5.28 4.72 40.13 0.30 8.49 13.03 9.83 22.17
7 5542 3815 5.25 5.00 44.15 0.31 2.15 3.49 3.58 22.12
8 3664 2979 4.89 4.41 44.06 0.30 0.79 0.97 2.69 22.07
9 28 041 8872 7.58 4.95 43.22 0.26 4.62 7.10 385.03 22.01

10 1640 1207 4.17 3.39 41.84 0.28 4.30 5.05 4.61 21.95
11 3492 1031 5.82 3.17 46.06 0.25 8.66 8.95 10.00 21.91
12 915 750 3.45 3.52 44.37 0.32 1.80 1.99 2.22 21.88
13 989 1392 3.58 4.05 45.47 0.32 3.42 4.42 5.18 21.88
14 1474 620 4.82 3.29 42.52 0.27 3.28 4.50 7.04 21.91
15 129 068 5420 12.40 3.33 45.90 0.15 21.45 22.18 17 018.91 21.95
16 10 166 3822 5.83 4.86 44.19 0.30 3.83 5.60 12.93 22.01
17 1483 603 4.07 3.26 44.83 0.30 2.30 2.53 2.36 22.07
18 31 156 31 069 7.70 5.94 46.46 0.27 14.55 19.75 8221.00 22.12
19 418 198 3.22 2.67 42.84 0.30 4.58 3.90 5.16 22.17
20 3207 4741 4.88 5.02 44.45 0.30 5.34 5.59 34.00 22.21
21 672 773 3.37 3.37 44.46 0.31 2.64 3.42 2.79 22.24
22 3520 1807 5.10 4.01 45.52 0.29 1.71 1.37 1.73 22.27
23 1979 845 4.24 3.66 45.53 0.32 4.45 4.85 7.38 22.29
24 6095 26 778 5.41 6.67 44.46 0.31 9.75 10.55 6676.21 27.88

T 2
C chart, but has a larger UCL. As discussed in Sullivan and Woodall18, the T 2

C control chart has greater power
to detect isolated outlying observations than the T 2

D control chart based on the successive differences variance–
covariance matrix estimator; however, the T 2

D chart is better for detecting a sustained shift in the mean vector.
For this dataset, there is no apparent sustained shift in the regression parameter vector.

The T 2
MVE control chart based on the minimum variance ellipsoid estimator indicates that boards 4, 9, 15, 18,

and 24 have outlying profiles. The most pronounced outlier is board 15, which both the T 2
C and T 2

D charts also
indicated as the most severe outlier. As shown by Vargas19, the T 2

MVE control chart is very powerful in detecting
multivariate outliers. Investigating the table of parameter estimates for these boards, given in Table I, it seems
reasonable that the boards 15 and 18 are outliers, with boards 4, 9, and 24 worthy of further investigation.

As discussed in Section 2.5, an alternative approach to modeling the profiles with a parametric curve is
to employ non-parametric smoothing techniques to model the profiles. Walker and Wright10 employed spline
smoothing with 16 degrees of freedom to model the 24 boards of the VDP data. We replicated their spline fits to
each profile. After obtaining the spline fits to each profile, ẏij , i = 1, . . . , m; j = 1, . . . , n, the average spline,
ỹj , is calculated. For example, the spline fit to board 1 and the average spline are illustrated in Figure 5.

The spline fit with 16 degrees of freedom provides a concise summary of the shape of the profile from board 1.
The average spline fit is systematically lower than the spline fit to board 1. In order to determine which boards
are in-control we calculated dissimilarity metrics as given in Section 2.5. Since the metrics Mi2 and Mi3 differ
only by a constant, it is not helpful to consider both metrics simultaneously. Instead we calculate the metrics
Mi1, Mi3, Mi4, and Mi5, and then employ an I -chart based on the moving range to establish control limits,
as suggested by researchers at Boeing31. We plot each metric versus i with associated control limits to obtain
control charts. The four charts are given in Figure 6.

The charts based on metrics Mi1 and Mi4 both give the same conclusion, that all the profiles of the boards are
in-control. This is not surprising since Mi4 is the absolute value of Mi1, but both are given for illustrative
purposes. The most extreme value of the metrics came from board 14, with values of M14,1 = −5.79 and
M14,4 = 5.79. This value represents the maximum (absolute) deviation of the spline fit to board 14 from the
average spline fit.
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Figure 3. Nonlinear regression parameter estimates a1, a2, b1, b2, c, and d by board for the VDP data

Similarly, the charts based on metrics Mi3 and Mi5 both give the same conclusion, that the profile for board 6
is out-of-control. Referring to Figure 1, board 6 is the one with the profile that is consistently lower than all
the other boards. The next most extreme value of the two metrics is that of board 3, although it does not give
an out-of-control signal. Again, referring to Figure 1, board 3 is the one with the profile that is consistently
higher than all the other boards. It is apparent that these two metrics measure how consistently different each
profile is from the average profile across the depth values, whereas metrics Mi1 and Mi4 measure the greatest
extent to which a profile is from the average at any particular depth value. It is important to note that the results
for the control charts on the metrics (Figure 6) do not show the same results as the control charts based on the
regression estimators in Figure 4. If the profile can be adequately represented by a parametric model, then this,
in general, will lead to more effective charts.

In addition to monitoring the regression parameter vectors of the profiles in a Phase I analysis, we should
monitor the variation about the profiles to check for stability. As mentioned in Section 2.4, we recommend
using the methods of Wludyka and Nelson28 to monitor the variance σ 2. Use of their method is appropriate
when the error terms within a profile are independent. In our VDP example, however, the within-profile density
measurements are spatially correlated. A more appropriate control chart in this case to monitor the process
variance σ 2 is a topic for further research.
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D
control chart based on the successive differences estimator; and (c) T 2
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4. AUTOCORRELATION

Engineering applications that give rise to nonlinear profile data may lead to autocorrelated error terms.
A common source of autocorrelated errors is the spatial or serial manner in which data are collected. The
VDP data, for example, is spatially correlated because the density measurements are taken at close intervals
along the vertical depth of the particleboard. On the other hand, some nonlinear profiles may have independent
error terms. One example of this is typical dose-response data where several doses of a particular drug are
administered to different subjects and their responses are measured. The subsequent error terms in the nonlinear
dose-response curve are typically assumed to be independent.

When the error terms are autocorrelated, due to serial, spatial, or any other effects, the correlation structure
should be taken into account in the analysis. Failure to do so might yield misleading results in some cases,
particularly with the control chart to monitor σ 2. In our example, given in Section 3, we estimated parameters
of a nonlinear regression model for each board. For our nonlinear model we assumed that the errors εij are
i.i.d. For the VDP data, it may be reasonable to assume that the εij are correlated. If this is the case, perhaps
an alternative approach would be to employ either nonlinear mixed model methods or generalized estimating
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Figure 5. Spline fit of board 1 (above) and average spline (below) for the VDP data

equations (GEE) methodology. Both methods can be used to estimate the mean function, or profile, while
accounting for autocorrelation in the error structure. In the presence of an autocorrelated error term, Jensen
and Birch34 show that profile analysis based on a nonlinear mixed model offers an improved control chart
performance over a nonlinear profile analysis assuming an independent error term. A more detailed treatment of
these methods can be found in Schabenberger and Pierce14 and Hardin and Hilbe35. In the context of analyzing
nonlinear profiles for Phase I applications, this approach is a topic that requires further investigation.

5. DISCUSSION

In Phase I, we are interested in identifying outlying observations as well as identifying step or ramp shifts in
the mean vector over time. As shown by Vargas19, the robust variance–covariance matrix and mean vector
estimators employed in the T 2

MVE statistic are very powerful in detecting multivariate outliers, but are not
powerful in detecting a step shift. However, the reverse is true of the T 2

D statistic. As shown by Sullivan and
Woodall18, the T 2

D chart is powerful in detecting a step shift, but not powerful in detecting multivariate outliers.
One possible alternative is to employ both the T 2

D and T 2
MVE charts simultaneously, as the former chart is sensitive

to step shifts and the latter is sensitive to outliers. However, in examining both charts simultaneously, one must
be cautious of inflating the false alarm probability. This approach is also a topic for further research.

We have not given a detailed treatment of the non-parametric approaches to monitoring profiles discussed in
Section 2.5. Rather, we have only described some methods that have been proposed and then illustrated their use
with the VDP data. Some issues that need to be addressed, for example, are the best non-parametric estimation
technique for a given scenario, the best metrics to apply, the strengths and weaknesses of each metric, and the
distributional properties of the metrics in order to establish valid control limits.
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Figure 6. Control charts on metrics: (a) Mi1, the maximum deviation; (b) Mi3, the maximum absolute deviation; (c) Mi4,
the sum of squared differences; and (d) Mi5, the mean absolute deviation for the VDP data

The field of profile monitoring using control charts has the potential to extend statistical process control to a
wide variety of engineering and pharmaceutical applications. With the increasing ease and efficiency in which
processes and products can be measured, there is a need for a statistical methodology to be developed which
can accommodate the growing needs of industry. We have encountered a number of engineering applications
in which a response curve is needed to assess quality. In some cases, the shape of the response curve can
be well represented by a parametric nonlinear regression function. In this paper we have developed control
chart methodology to monitor such nonlinear profiles for Phase I applications. When a profile cannot be easily
described by a parametric function, non-parametric methods may be applied.
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APPENDIX A

The function for β(m, p, i) is

β(m, p, i) = I{i=1,m}
(

p

2
− 1

a11(m − b11)

)
+ I{i=2,...,m−1}(a12p + b12)

and the function for γ (m, p, i) is given by

γ (m, p, i) = I{i=1,m}a21 + I{i=2,...,m−1}
[
a22

(
i − m + 1

2

)2

+ b22

]
where

I{i=1,m} =
{

1 if i = 1 or i = m

0 otherwise

I{i=2,...,m−1} =
{

1 if 2 ≤ i ≤ m − 1

0 otherwise

a11 = 6.356 e−0.825p + 0.06

b11 = 0.5564p + 0.9723

a12 = 0.54 − 0.25 e−0.25(m−15)

b12 = −0.085 + 0.2 e−0.2(m−22)

a21 = (−0.5m + 2)p + 1

3
(m + 3)(m − 5)

a22 = 0.99 + 0.38 e0.38(p−13.5) − 1

0.25 e−0.25(p−10)(m − 11 + [(p − 7)2]/3)

b22 = (0.07 e−0.07(m−42) − 1.95)p + 0.0833m2
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