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Abstract—This paper proposes an uncorrelated multilinear
principal component analysis (UMPCA) algorithm for unsuper-
vised subspace learning of tensorial data. It should be viewed
as a multilinear extension of the classical principal component
analysis (PCA) framework. Through successive variance max-
imization, UMPCA seeks a tensor-to-vector projection (TVP)
that captures most of the variation in the original tensorial input
while producing uncorrelated features. The solution consists of
sequential iterative steps based on the alternating projection
method. In addition to deriving the UMPCA framework, this
work offers a way to systematically determine the maximum
number of uncorrelated multilinear features that can be extracted
by the method. UMPCA is compared against the baseline PCA
solution and its five state-of-the-art multilinear extensions, namely
two-dimensional PCA (2DPCA), concurrent subspaces analysis
(CSA), tensor rank-one decomposition (TROD), generalized PCA
(GPCA), and multilinear PCA (MPCA), on the tasks of unsu-
pervised face and gait recognition. Experimental results included
in this paper suggest that UMPCA is particularly effective in
determining the low-dimensional projection space needed in such
recognition tasks.

Index Terms—Dimensionality reduction, face recognition, fea-
ture extraction, gait recognition, multilinear principal component
analysis (MPCA), tensor objects, uncorrelated features.

I. INTRODUCTION

I NPUT data sets in many practical pattern recognition
problems are multidimensional in nature and they can

be formally represented using tensors. Several indices are
needed to address the elements of a tensor and the number of
indices used defines the “order” of a tensor, with each index
defining one “mode” [1]. There are many real-world tensor
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TABLE I
LIST OF ACRONYMS

objects [2]–[5], such as gray-level images as second-order
tensors consisting of the column and row modes [6]–[8], and
gray-scale video sequences as third-order tensors consisting
of the column, row, and time modes [9], [10]. In addition,
many streaming and mining data are frequently organized
as third-order tensors [11]–[14]. For instance, data in social
network analysis are usually organized in three modes, namely
time, author, and keywords [11]. A typical real-world tensor
object is often specified in a high-dimensional tensor space and
recognition methods operating directly on this space suffer from
the so-called curse of dimensionality [15]. Nonetheless, a class
of tensor objects in most applications are highly constrained
to a subspace, a manifold of intrinsically low dimension [15].
Subspace learning, a popular dimensionality reduction method,
is frequently employed to transform a high-dimensional data
set into a low-dimensional space of equivalent representation
while retaining most of the underlying structure [16]. The focus
of this paper is on unsupervised subspace learning of tensorial
data. For convenience of discussion, Table I lists the acronyms
used in this paper.

For unsupervised subspace learning of tensorial data, an ob-
vious first choice is to utilize existing linear solutions such as
the celebrated principal component analysis (PCA). PCA is a
classical linear method for unsupervised subspace learning that
transforms a data set consisting of a large number of interre-
lated variables to a new set of uncorrelated variables, while re-
taining most of the input data variations [20]. However, PCA on
tensor objects requires the reshaping (vectorization) of tensors
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into vectors in a very high-dimensional space. This not only in-
creases the computational complexity and memory demands but
most importantly destroys the structural correlation of the orig-
inal data [7]–[9], [23]–[25]. It is commonly believed that poten-
tially more compact or useful low-dimensional representations
can be obtained directly from the original tensorial represen-
tation. Recently, there have been several proposed PCA exten-
sions operating directly on tensor objects rather than their vec-
torized versions [8], [9], [26].

The tensor rank-one decomposition (TROD) algorithm intro-
duced in [22] extracts features for a set of images based on vari-
ance maximization and the solution involves (greedy) succes-
sive residue calculation. The two-dimensional PCA (2DPCA)
proposed in [17] constructs an image covariance matrix using
image matrices as inputs. However, in 2DPCA, a linear trans-
formation is applied only to the right-hand side of image ma-
trices so the image data is projected in one mode only, resulting
in poor dimensionality reduction [7]. In comparison, the gen-
eralized low rank approximation of matrices (GLRAM) algo-
rithm in [7] applies linear transformations to the input image
matrices from both the left- and right-hand sides and it is
shown to outperform 2DPCA. While GLRAM targets approx-
imation and reconstruction in its formulation, the generalized
PCA (GPCA) proposed in [8] aims to maximize the captured
variation, as a two-dimensional extension of PCA. In addition,
the two-dimensional singular value decomposition (2DSVD)
[27] provides a near-optimal solution for GLRAM and GPCA.
For higher order extensions, the concurrent subspaces analysis
(CSA) formulated in [26] targets at optimal reconstruction of
general tensor objects, which can be considered as a further
generalization of GLRAM, and the multilinear PCA (MPCA)
introduced in [9] targets at variation maximization for general
tensor objects, which can be considered as a further general-
ization of GPCA.

Nevertheless, none of the existing multilinear extensions of
PCA mentioned above takes an important property of PCA into
account, i.e., the fact that PCA derives uncorrelated features.
Instead, these multilinear extensions of PCA produce orthog-
onal bases in each mode. Although uncorrelated features imply
orthogonal projection bases in PCA [20], this is not necessarily
the case for its multilinear extension. Uncorrelated features are
highly desirable in many recognition tasks since they contain
minimum redundancy and ensure linear independence among
features [28]. In practical recognition tasks, uncorrelated fea-
tures can greatly simplify the subsequent classification task.
Thus, this paper investigates multilinear extension of PCA
which can produce uncorrelated features. A novel uncorrelated
multilinear PCA (UMPCA) is proposed for unsupervised tensor
object subspace learning (dimensionality reduction). UMPCA
utilizes the tensor-to-vector projection (TVP) principle intro-
duced during the development of the uncorrelated multilinear
discriminant analysis (UMLDA) framework presented in [6],
and it parallelizes the successive variance maximization ap-
proach seen in the classical PCA derivation [20]. In UMPCA,
a number of elementary multilinear projections (EMPs) are
solved to maximize the captured variance, subject to the
zero-correlation constraint. The solution is iterative in nature,
as many other multilinear algorithms [8], [22], [26].

This paper makes two main contributions.
1) The introduction of a novel algorithm (UMPCA) for ex-

tracting uncorrelated features directly from tensors. The
derived solution captures the maximum variation of the
input tensors. As a multilinear extension of PCA, UMPCA
not only obtains features that maximize the variance cap-
tured, but also enforces a zero-correlation constraint, thus
extracting uncorrelated features. UMPCA is the only mul-
tilinear extension of PCA, to the best of the authors’ knowl-
edge, that can produce uncorrelated features in a fashion
similar to that of the classical PCA, in contrast to other
multilinear PCA extensions, such as 2DPCA [17], CSA
[26], TROD [22], GPCA [8], and MPCA [9]. It should be
noted that unlike the works reported in [9] and [26], TVP
rather than tensor-to-tensor projection (TTP) is used here,
and that unlike the heuristic approach of [22], this work
takes a systematic approach in deriving the solution under
the TVP paradigm. Interested readers should refer to [6],
[9], and [19] for a detailed discussion on the topic of tensor
projections, including TTP and TVP.
It should be noted that although the proposed UMPCA
algorithm takes an approach similar to that used in the
UMLDA algorithm [6] to derive uncorrelated features
through TVP, the two methods utilize different objective
functions. UMPCA is an unsupervised learning algo-
rithm which does not require labeled training data, while
UMLDA is a supervised learning algorithm which requires
access to labeled training samples. It is therefore obvious
that UMPCA can be used in many applications where
UMLDA cannot be applied. Examples include typical
unsupervised learning tasks such as clustering, and the
one-training-sample (OTS) scenario recently studied in
the face recognition literature, where many supervised al-
gorithms cannot be applied properly due to the availability
of only one training sample per class [29], [30].

2) A systematic method to determine the maximum number
of uncorrelated multilinear features that can be extracted
under the UMPCA framework. The pertinent corollary
provides insight into the possible uses of UMPCA. It helps
designers and practitioners to understand the possible
limitations of UMPCA and provides guidance on where
and how UMPCA should be used. In the linear case, the
derived constraint on the maximum number of uncorre-
lated features reduces to a well-known constraint on the
rank of the data matrix in PCA.

The rest of this paper is organized as follows. Section II re-
views the basic multilinear notation and operations, including
TVP. In Section III, the problem is stated and the UMPCA
framework is formulated, with an algorithm derived as a sequen-
tial iterative process. This section also includes a systematic way
to determine the maximum number of uncorrelated features that
can be extracted under the UMPCA framework. In addition, is-
sues such as initialization, projection order, termination, con-
vergence, and computational complexity are discussed in de-
tail. Section IV studies the properties of the proposed UMPCA
algorithm using three synthetic data sets and evaluates the ef-
fectiveness of UMPCA in face and gait recognition tasks by
comparing its performance against that of PCA, 2DPCA, CSA,
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TABLE II
LIST OF NOTATION

TROD, GPCA, and MPCA. Finally, Section V draws the con-
clusions. It should be noted that in order to take a systematic
approach to the problem of interest, this work shares some sim-
ilarity in presentation with [6].

II. MULTILINEAR FUNDAMENTALS

This section introduces the fundamental multilinear notation,
operations, and projections necessary for the presentation of
UMPCA. For more detailed understanding of the materials pre-
sented here, readers should refer to previously published works,
such as those in [1], [6], [9], and [19]. The notation conventions
used in this paper are listed in Table II.

A. Notation and Basic Multilinear Operations

Following the notational convention of [1], vectors are de-
noted by lowercase boldface letters, e.g., ; matrices are denoted
by uppercase boldface letters, e.g., ; and tensors are denoted
by calligraphic letters, e.g., . Their elements are denoted with
indices in parentheses. Indices are denoted by lowercase letters
and span the range from 1 to the uppercase letter of the index,
e.g., .

An th-order tensor is addressed by
indices , , and each addresses the -mode of

. The -mode product of a tensor by a matrix ,
denoted by , is a tensor with entries

(1)

The scalar product of two tensors is de-
fined as

(2)

A rank-one tensor equals to the outer product of vec-
tors: , which means that

for all
values of indices.

B. Tensor-to-Vector Projection

In order to extract uncorrelated features from tensorial data
directly, i.e., without vectorization, this work employs the TVP

introduced in [6]. A brief review on TVP is given here and de-
tailed introduction is available in [6].

TVP is a generalized version of the projection framework first
introduced in [22]. It consists of multiple EMPs. An EMP is
a multilinear projection composed
of one unit projection vector per mode, i.e., for

, where is used to indicate the Euclidean norm
for vectors. An EMP projects a tensor to a
scalar through the unit projection vectors as

where .
The TVP of a tensor object to a vector consists of
EMPs , , which can

be written concisely as

(3)

where the th component of is obtained from the th EMP
as: . The TROD
[22] in fact seeks a TVP to maximize the captured variance.
However, it takes a heuristic approach. Section III proposes a
systematic, more principled formulation by taking consideration
of the correlations among features.

III. UNCORRELATED MULTILINEAR PCA

This section introduces the UMPCA framework for unsu-
pervised subspace learning of tensor objects. The UMPCA
objective function is first formulated. Then, the successive
variance maximization approach and alternating projection
method are adopted to derive uncorrelated features through
TVP. A methodology to systematically determine the max-
imum number of uncorrelated features that can be extracted is
introduced. Practical issues regarding initialization, projection
order, termination, and convergence are addressed and the
computational aspects of UMPCA are discussed in detail.

In the presentation, for the convenience of discussion and
without loss of generality, training samples are assumed to be
zero-mean so that the constraint of uncorrelated features is
the same as orthogonal features [20], [31].1 When the training
sample mean is not zero, it can be subtracted to make the
training samples to be zero-mean. It should be noted that the
orthogonality and zero correlation discussed here are referring
to the concepts in linear algebra rather than statistics [32].

A. Formulation of the UMPCA Problem

Following the standard derivation of PCA provided in [20],
the variance of the principal components is considered one at a
time, starting from the first principal component that targets to

1Let � and � be vector observations of the variables � and �. Then, � and �
are orthogonal iff � � � �, and � and � are uncorrelated iff �� � ��� �� �
��� � �, where �� and �� are the means of � and �, respectively [32]. Thus, two
zero-mean ��� � �� � �� vectors are uncorrelated when they are orthogonal
[31].
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capture the most variance. In the setting of TVP, the th prin-
cipal components are , where is
the number of training samples and is the projection of

the th sample by the th EMP :

. Accordingly, the
variance is measured by their total scatter , which is defined
as

(4)

where . In addition, let denote the
th coordinate vector, which is the representation of the training

samples in the th EMP space. Its th component
. With these definitions, the formal definition of the un-

supervised multilinear subspace learning problem in UMPCA
is as follows.

A set of tensor object samples are
available for training. Each tensor object
assumes values in the tensor space ,
where is the -mode dimension of the tensor and

denotes the Kronecker product [33]. The objective of
UMPCA is to determine a TVP, which consists of EMPs

, so that the original tensor
space can be mapped into a vector
subspace (with )

(5)

while the variance of the projected samples, measured by ,
is maximized in each EMP, subject to the constraint that the
coordinate vectors are uncorrelated.

In other words, the UMPCA objective is to determine a set of
EMPs that maximize the variance

captured while producing uncorrelated features. The objective
function for determining the th EMP can be expressed as

subject to and

(6)

where is the Kronecker delta defined as

if
otherwise.

(7)

The constraint is imposed since as in the linear
case [20], the maximum variance cannot be achieved for finite

.
Remark 1: It should be noted that due to the nature of TVP,

the UMPCA algorithm is a feature extraction algorithm which
produces feature vectors in a manner similar to those of linear
solutions. Thus, for the tensor sample , the corresponding
UMPCA feature vector is given as

(8)

B. Derivation of the UMPCA Solution

To solve this UMPCA problem in (6), the successive vari-
ance maximization approach, first utilized in the derivation of
PCA [20], is taken. The EMPs
are determined sequentially in steps. This stepwise process
proceeds as follows.

— Step 1: Determine the first EMP
by maximizing .

— Step 2: Determine the second EMP
by maximizing subject to the constraint

that .

— Step 3: Determine the third EMP
by maximizing subject to the constraint that
and .

— Step : Determine the th EMP

by maximizing subject
to the constraint that for .

Fig. 1 lists the pseudocode of the proposed UMPCA algorithm,
where is a matrix to be defined in the formulated eigen-

value problem below, and is a total scatter matrix to be de-
fined below. In the figure, the stepwise process described above
corresponds to the loop indexed by . In the following, how to
compute these EMPs is presented in detail.

In order to determine the th EMP ,
there are sets of parameters corresponding to the projec-
tion vectors to be determined, , one in each
mode. It will be desirable to determine these sets of parame-
ters ( projection vectors) in all modes simultaneously so that

is globally maximized, subject to the zero-correlation con-
straint. Unfortunately, as in other multilinear subspace learning
algorithms [6], [9], [18], there is no closed-form solution for this
problem, except when , which is the classical PCA where
only one projection vector is to be solved. Therefore, following
the heuristic approaches in [6], [9], and [18], the alternating pro-
jection method is used to solve the multilinear problem, as de-
scribed below.

To determine the th EMP, the sets of parameters for the
projection vectors are estimated one mode (i.e., one set) at

a time. For mode , a linear subproblem in terms of is
solved by fixing , the projection vectors for the
other modes. Thus, there are such conditional subproblems,
corresponding to the loop indexed by in Fig. 1. This process
iterates until a stopping criterion is met, which corresponds to
the loop indexed by in Fig. 1.

To solve for , the conditional subproblem in the
-mode, the tensor samples are projected in these

modes first to obtain the vectors

(9)

where , assuming that is given.
This conditional subproblem then becomes to determine
that projects the vector samples
onto a line so that the variance is maximized, subject to the
zero-correlation constraint, which is a PCA problem with the
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Fig. 1. Pseudocode implementation of the UMPCA algorithm for unsupervised subspace learning of tensor objects.

input samples . The total scatter ma-
trix corresponding to is then
defined as

(10)

where . With (10), it is now

ready to determine the projection vectors. For , the

that maximizes the total scatter in the projected

space is obtained as the unit eigenvector of associated with
the largest eigenvalue, for . For ,
given the first EMPs, the th EMP aims to maximize
the total scatter , subject to the constraint that features
projected by the th EMP are uncorrelated with those projected
by the first EMPs. Let be a matrix
with as its th column, i.e.,

(11)

then the th coordinate vector is . The con-
straint that is uncorrelated with can
be written as

(12)

Thus, can be determined by solving the following
constrained optimization problem:

subject to and

(13)

The solution is given by the following theorem.

Theorem 1: The solution to the problem in (13) is the (unit-
length) eigenvector corresponding to the largest eigenvalue of
the following eigenvalue problem:

(14)

where

(15)

(16)

(17)

and is an identity matrix of size .
Proof: The proof of Theorem 1 is given in Appendix I.

By setting and from Theorem 1, a unified so-
lution for UMPCA is obtained: for , is ob-
tained as the unit eigenvector of associated with the
largest eigenvalue. As pointed out earlier, this solution is an ap-
proximate, suboptimal solution to the original formulation in
(6), due to the heuristics employed to tackle the problem.

C. Determination of the Maximum Number of Extracted
Uncorrelated Features

It should be pointed out that compared to PCA and its existing
multilinear extensions, UMPCA has a possible limitation in the
number of (uncorrelated) features that can be extracted. This is
because the projection to be solved in UMPCA is highly con-
strained, in both their correlation property and the simplicity of
the projection. Compared with PCA, the projection in UMPCA
is a TVP rather than a linear projection from vector to vector.
Thus, the number of parameters to be estimated in UMPCA is
usually much smaller than that in PCA, as discussed in [19].
Compared to 2DPCA, CSA, TROD, and MPCA, the correla-
tions among features extracted by UMPCA have to be zero. The
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maximum number of features that can be extracted by UMPCA
is given by the following corollary.

Corollary 1: The number of uncorrelated features that
can be extracted by UMPCA is upper-bounded by

, i.e., , provided that
the elements of are not all zero, where is the -mode
dimensionality and is the number of training samples.

Proof: The proof of Corollary 1 is given in Appendix II.
Corollary 1 implies that UMPCA may be more appropriate

for high-resolution tensor objects where the dimensionality in
each mode is high enough to result in a larger and en-
able the extraction of sufficient number of (uncorrelated) fea-
tures. It also indicates that UMPCA is more suitable for applica-
tions that need only a small number (e.g., )
of features, such as clustering of a small number of classes.

In addition, it is interesting to examine Corollary 1 for
the linear case, i.e., for . Since UMPCA follows the
approach of successive variance maximization in the classical
derivation of PCA [20], when , the samples are vectors

and UMPCA reduces to PCA. Accordingly, in
each step , there is only one projection vector to be solved to
maximize the captured variance, subject to the zero-correlation
constraint. Corollary 1 indicates that the maximum number of
extracted features does not exceed when .
This is exactly the case for PCA, where the number of PCA
features cannot exceed the rank of the data matrix, which
is upper-bounded by the minimum of the dimension of the
samples and the number of samples .

D. Initialization, Projection Order, Termination,
and Convergence

This section discusses UMPCA design issues, including the
initialization procedure, the projection order, termination condi-
tions, as well as issues related to the convergence of the solution.

Due to the multilinear nature of UMPCA, the determination
of each EMP is iterative in nature. Since
solving the projection vector in one mode requires the projection
vectors in all the other modes, initial estimations for the projec-
tion vectors are necessary. However, as in [6], [24], and
[34]–[36], determining the optimal initialization in UMPCA is
still an open problem. This work empirically studies two com-
monly used initialization methods [6], [19], [22], [35], [36]: uni-
form initialization and random initialization. The uniform ini-
tialization initializes each -mode projection vector to the all
ones vector , with proper normalization to have unit length.
The random initialization draws each element of the -mode
projection vectors randomly from a zero-mean uniform distribu-
tion between , with normalization to have unit length
as well. The experimental results reported in Section IV indicate
that the results of UMPCA are affected by initialization, and the
uniform initialization gives more stable results.

The mode ordering (the loop indexed by in Fig. 1) in
computing the projection vectors affects performance. The op-
timal way to determine the projection order is an open research
problem. Simulation studies on the effects of the projection
order indicate that different projection order results in different
amount of captured variance. However, there is no guidance

either from the problem, the data, or the algorithm on the best
projection order. Hence, there is no preference on a particular
projection order, and the projection vectors are solved sequen-
tially (from 1-mode to -mode), in a fashion similar to the one
used in [6], [9], and [18].

As can be seen in Fig. 1, the iterative procedure terminates
when , where is the

total scatter captured by the th EMP obtained in the th it-
eration of UMPCA and is a small number threshold. Alter-
natively, the convergence of the projection vectors can also be
tested: , where

(18)

and is a user-defined small number threshold (e.g., ).
Section IV indicates that the variance captured by a partic-
ular EMP usually increases rapidly for the first few iterations
and slowly afterwards. Therefore, the iterative procedures in
UMPCA can be terminated by simply setting a maximum
number of iterations in practice for convenience, especially
when the computational cost is a concern.

Regarding convergence, the derivation of Theorem 1 (the end
of Appendix I) implies that per iteration, the scatter is a non-
decreasing function since each update of the projection vector

in a given mode maximizes . On the other hand,
is upper-bounded by the variation in the original samples,

following similar argument in [9]. Therefore, UMPCA is ex-
pected to convergence over iterations, following [23, Th. 1] and
[24]. Empirical results presented in Section IV indicate that
UMPCA converges within ten iterations for typical tensor ob-
jects in practice. In addition, when the largest eigenvalues in
each mode are with multiplicity 1, the projection vectors ,
which maximize the objective function , are expected to con-
verge as well, where the convergence is up to sign. Simulation
studies show that the projection vectors do converge over
a number of iterations.

E. Computational Aspects of UMPCA

Finally, the computational aspects of UMPCA are considered
here. Specifically, the computational complexity and memory
requirements are analyzed, following the framework used in [9]
for MPCA, and in [6] for UMLDA. It is assumed again that

for simplicity.
The most computationally demanding steps in UMPCA are

the calculations of the projection , the computation of
and , and the calculation of the leading eigenvector

of . The complexity of calculating for

and are in order of and

, respectively. The computation of is in the order of

(19)
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Fig. 2. Illustration of the effects of initialization on the scatter captured by UMPCA. Comparison of the captured � with uniform and random initialization
(average of 20 repetitions) over 30 iterations for � � �� �� �� �� � on synthetic data set (a) db1, (b) db2, and (c) db3. (d) Illustration of the captured � of ten
random initializations for � � � on db2.

The computation of and its eigendecomposition2 are
both of order . Therefore, the computational complexity
per mode for one iteration of step is

(20)

Regarding the memory requirement, the respective compu-
tation can be done incrementally by reading sequentially.
Thus, except for , the memory needed for the UMPCA
algorithm can be as low as , although sequential reading
will lead to higher input/output (I/O) cost.

From Fig. 1 and the discussions above, as a sequential itera-
tive solution, UMPCA may have a high computational and I/O

2Since only the largest eigenvalue and the corresponding eigenvector are
needed in UMPCA, more efficient computational methods may be applied in
practice.

cost. Nevertheless, solving the UMPCA projection is only in
the training phase of the targeted pattern recognition tasks, so
it can be done offline and the additional computational and I/O
costs due to iterations and sequential processing are not consid-
ered a disadvantage. During testing, feature extraction from a
test sample is an efficient linear operation, as in conventional
linear subspace learning algorithms.

IV. EXPERIMENTAL STUDIES

This section presents a number of experiments carried out in
support of the following objectives.

1) Investigate the various properties of the UMPCA
algorithm.

2) Demonstrate the utility of the UMPCA algorithm in typical
learning applications by comparing the UMPCA recogni-
tion performance against that of the baseline PCA solution
and its state-of-the-art multilinear extensions on two recog-
nition problems involving tensorial data, namely, face and
gait recognition.
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A. Study of UMPCA Properties on Synthetic Data

The following properties of UMPCA are studied here: 1) the
effects of the initialization procedure, 2) the effects of the pro-
jection order, and 3) the convergence of the algorithm. Similar
to MPCA [9], UMPCA is an unsupervised algorithm derived
under the variance maximization principle and eigendecomposi-
tion in each mode (Theorem 1) is an important step in computing
the UMPCA projection. Thus, its properties are affected by the
eigenvalue distribution of the input data. Three third-order ten-
sorial data sets, namely, db1, db2, and db3, have been syntheti-
cally generated in [9], with eigenvalues in each mode spanning
different magnitude ranges. In this work, experimental studies
of the UMPCA properties are performed on these three synthetic
data sets, with a brief description of the generation process in-
cluded below.

For each set, samples are generated
according to ,
where ,
and . All entries in are drawn from a
zero-mean unit-variance Gaussian distribution and multiplied
by , where controls the eigenvalue
distributions. are orthogonal matrices
obtained from applying singular value decomposition (SVD)
on random matrices with entries drawn from zero-mean,
unit-variance Gaussian distribution. All entries of are from
a zero-mean Gaussian distribution with variance 0.01. Three
synthetic data sets, db1, db2, and db3, of size
with and and , respectively,
are generated, where a smaller results in a narrower range
of eigenvalue spread and vice versa. Practical data such as
face and gait data share similar characteristics with the data in
db1 [9].

1) The Effects of Initialization: The effects of initialization
are studied first. The uniform initialization and random initial-
ization discussed in Section III-D are tested up to 30 iterations,
with the projection order fixed. Fig. 2 shows the simulation
results on the three synthetic data sets. The results shown for
random initialization in Fig. 2(a)–(c) are the average of 20 re-
peated trials. From Fig. 2(a) and (b), it can be seen that for ,
both the uniform and random initializations result in the same

. For , two ways of initialization lead to different ,
with the uniform initialization performing better (i.e., results in
larger ) on db2. In addition, it should be noted that for db1
and db2, decreases as increases, which is expected since
maximum variation should be captured in each EMP subject to
the zero-correlation constraint. From the figures, the algorithm
converges in around 5 and 15 iterations for db1 and db2, respec-
tively. For db3 in Fig. 2(c), the uniform and random initializa-
tions do not result in the same even for and does
not always decrease as increases, which indicates that some
EMPs fail to capture the maximum variation. It may be partly
explained by observing from Fig. 2(c) that the algorithm con-
verges slowly and 30 iterations may not be sufficient to reach
convergence (i.e., maximize the captured variation).

Fig. 2(d) further shows some typical results of the evolution
of for ten random initializations on db2 with . As seen
from the figure, the results obtained from random initialization

have high variance. Although when computational cost is not
a concern, a number of random initializations can be tested to
choose the one results in the best performance, i.e., the largest

, the uniform initialization is a safe choice when testing sev-
eral initializations is not desirable. Thus, the uniform initializa-
tion is used in all the following experiments for UMPCA.

2) The Effects of Projection Order: Next, the effects of the
projection order are tested, with representative results shown in
Fig. 3 for on the three synthetic data sets. As shown
in the figure, the projection order affects UMPCA as well, ex-
cept for on db1 and db2. Nonetheless, no one particular
projection order consistently outperforms all the others. Thus, in
the following experiments, the projection order is fixed to be se-
quential from 1 to . As in initialization, if computational cost
is not a concern, all possible projection orders could be tested
and the one resulting in the largest should be considered for
each .

3) Convergence Studies: Last, experimental studies are per-
formed on the convergence of the total scatter captured in each
EMP and the convergence of the corresponding projection vec-
tors in each mode. Fig. 4 depicts the evolution of the captured
total scatter and the two-mode projection vector difference over
50 iterations for . From Fig. 4(a), (c), and (e),
it can be observed that the algorithm converges (in terms of
the total scatter) on db1 and db2 in about 10 and 30 itera-
tions, respectively, while on db3, the convergence speed is
considerably lower, indicating again the difficulty of db3.
Fig. 4(b), (d), and (f) demonstrates that the derived projection
vectors converge too. It is also observed that the convergence
speed of the projection vectors on db3 is much lower than the
convergence speed on the other two data sets. This is likely due
to the narrow range of eigenvalue spread in db3.

B. Evaluation on Face and Gait Recognition

The proposed UMPCA is evaluated on two unsupervised
recognition tasks, namely, face recognition [37] and gait
recognition [38], which can be considered as second-order and
third-order tensor biometric classification problems, respec-
tively. These two recognition tasks have practical importance in
security-related applications such as biometric authentication
and surveillance [39]. The evaluation is through performance
comparison against the baseline PCA solution and its existing
multilinear extensions.

1) The Face and Gait Data: The facial recognition tech-
nology (FERET) database [40], a standard testing database for
face recognition performance evaluation, includes 14 126 im-
ages from 1199 individuals covering a wide range of variations
in viewpoint, illumination, facial expression, races, and ages.
The FERET subset selected in this experimental evaluation con-
sists of those subjects that have at least eight images in the data-
base with at most 15 of pose variation. Thus, 721 face images
from 70 FERET subjects are considered. Since the focus here
is on recognition rather than detection, all face images are man-
ually cropped, aligned (with manually annotated coordinate in-
formation of eyes), and normalized to 80 80 pixels, with 256
gray levels per pixel. Fig. 5(a) depicts sample face images from
a subject in this FERET subset.
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Fig. 3. Illustration of the effects of projection order on the scatter captured by UMPCA: on db1 with (a) � � � and (b) � � �, on db2 with (c) � � � and (d)
� � �, and on db3 with (e) � � � and (f) � � �.

The University of South Florida (USF) gait challenge data set
version 1.7 consists of 452 sequences from 74 subjects walking
in elliptical paths in front of the camera, with two viewpoints
(left or right), two shoe types (A or B), and two surface types
(grass or concrete). There are seven probes in this data set and
probe A is chosen for the evaluation, with difference in view-

point only. Thus, the gallery set is used as the training set and
it is captured on grass surface, with shoe type A and from the
right view, and probe A is used as the test set and it is captured
on grass surface, with shoe type A and from the left view. Each
set has only one sequence for a subject. Subjects are unique in
the gallery and probe sets and there are no common sequences
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Fig. 4. Illustration of the convergence of UMPCA: the evolution of the total scatter captured on (a) db1, (c) db2, and (e) db3; and the evolution of
������ �� � on (b) db1, (d) db2, and (f) db3.

between the gallery set and the probe set. These gait data sets
are employed to demonstrate the performance on third-order
tensors since gait silhouette sequences are naturally 3-D data
[9]. The procedures in [9] are followed to get gait samples from
gait silhouette sequences and each gait sample is resized to a
third-order tensor of 32 22 10. There are 731 and 727 gait

samples in the gallery set and probe A, respectively. Fig. 5(b)
shows three gait samples from the USF gait database.

2) Algorithms and Their Settings in Performance Compar-
ison: In the face and gait recognition experiments, the perfor-
mance of the proposed UMPCA is compared against that of
PCA [20], [21] and five existing multilinear PCA extensions,
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Fig. 5. Examples of the biometric data used in performance evaluation: (a) eight face samples from a subject in the FERET subset used, and (b) three gait samples
from the USF gait database V.1.7, shown by concatenating frames in rows.

Fig. 6. Detailed face recognition results by PCA algorithms on the FERET database for � � �: (a) performance curves for the low-dimensional projection case,
(b) performance curves for the high-dimensional projection case, (c) the variation captured by individual features, and (d) the correlation among features.

2DPCA [17], CSA [18], TROD [22], GPCA [8], and MPCA [9].
It should be noted that 2DPCA and GPCA are only applied to the
face recognition problem since it cannot handle the third-order
tensors in gait recognition. In addition, 2DSVD [27] is used for

initialization in GPCA so the GPCA algorithm tested is equiva-
lent to MPCA with .

The recognition performance is evaluated by the identifica-
tion rate calculated through similarity measurement between
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Fig. 7. Detailed face recognition results by PCA algorithms on the FERET database for � � �: (a) performance curves for the low-dimensional projection case,
(b) performance curves for the high-dimensional projection case, (c) the variation captured by individual features, and (d) the correlation among features.

feature vectors. The simple nearest neighbor classifier with
Euclidean distance measure is used for classification of ex-
tracted features since the focus of this paper is on feature
extraction. Among the algorithms considered here, 2DPCA,
CSA, GPCA, and MPCA produce tensorial features, which
need to be vectorized for classification. Hence, for these four
algorithms, each entry in the projected tensorial features is
viewed as an individual feature and the corresponding total
scatter as defined in (4) is calculated. The tensorial features
produced by these methods are then arranged into a vector
in descending total scatter. All the iterative algorithms (CSA,
TROD, GPCA, MPCA, and UMPCA) are terminated by setting
the maximum number of iterations for fair comparison and
computational concerns. Since CSA, GPCA, and MPCA have
very good convergence performance, is set to 1. For TROD
and UMPCA, is set to 10 and the uniform initialization is
used. Due to Corollary 1, up to 80 features are tested in the face
recognition experiments and up to ten features are tested in the
gait recognition experiments.

3) Face Recognition Results: Gray-level face images are nat-
urally second-order tensors (matrices), i.e., . There-

fore, they are input directly as 80 80 tensors to the multi-
linear algorithms (2DPCA, CSA, TROD, GPCA, MPCA, and
UMPCA), while for PCA, they are vectorized to 6400 1 vec-
tors as input. For each subject in a face recognition experiment,

samples are randomly selected for un-
supervised training and the rest are used for testing. The results
averaged over 20 such random splits (repetitions) are reported in
terms of the correct recognition rate (CRR), i.e., the rank 1 iden-
tification rate. Figs. 6 and 7 show the detailed results for
and , respectively. is the one training sample (per
class) scenario [30], and is the maximum number of
training samples that can be used in this set of experiments. It
should be noted that for PCA and UMPCA, there are at most
69 (uncorrelated) features when since there are only
70 faces for training and the mean is zero. Figs. 6(a) and 7(a)
plot the CRRs against , the dimensionality of the subspace, for

, and Figs. 6(b) and 7(b) plot those for ranging
from 15 to 80. From the figures, UMPCA outperforms the other
five methods in both cases and across all s, indicating that the
uncorrelated features extracted directly from the tensorial face
data are effective in classification. The figures also show that for
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TABLE III
FACE RECOGNITION RESULTS BY PCA ALGORITHMS ON THE FERET
DATABASE: THE CRRS ������ ���	
 FOR VARIOUS �s AND � s

UMPCA, the recognition rate saturates around , which
can be explained by observing the variation captured by indi-
vidual features as shown in Figs. 6(c) and 7(c) (in scale).
These figures show that the variation captured by UMPCA is
considerably lower than those captured by the other methods,
due to its constraints of zero-correlation and the TVP. Despite
capturing lower variation, UMPCA has superior performance in
the recognition task performed. Nonetheless, when the variation
captured is too low, those corresponding features are no longer
descriptive enough to contribute in classification, leading to the
saturation.

In addition, the average correlations of individual features
with all the other features are plotted in Figs. 6(d) and 7(d).
As supported by theoretical derivation, features extracted by
PCA and UMPCA are uncorrelated. In contrast, the features
extracted by all the other methods are correlated, with those
extracted by 2DPCA and TROD having much higher corre-
lation on average, which could be partly the reason of their
poorer performance.

The recognition results for are listed
in Table III for , with both the mean and the
standard deviation (STD) over 20 repetitions indicated. The top
two results for each and combination are highlighted in bold

face for easy reading. From the table, UMPCA achieves the best
recognition results in all cases reported. In particular, for smaller

, UMPCA outperforms the other methods signif-
icantly, demonstrating its superior capability in classifying faces
in low-dimensional projection spaces.

4) Gait Recognition Results: In order to evaluate the recog-
nition performance of UMPCA on third-order tensors, recogni-
tion experiments are also carried out on the 3-D gait data de-
scribed in Section IV-B1. In these experiments, gait samples
are input directly as third-order tensors to the multilinear algo-
rithms, while for PCA, they are vectorized to 7040 1 vectors
as input. The gallery set is used for training and the probe set A
is used for testing. For the classification of individual gait sam-
ples, the CRRs are reported in Fig. 8(a). For the classification
of gait sequences, both rank 1 and rank 5 recognition rates are
reported in Fig. 8(b) and (c). The calculation of matching scores
between two gait sequences follows that in [9]. From Fig. 8(a),
starting from four features, UMPCA outperforms the other four
methods consistently in terms of CRRs for individual gait sam-
ples. Fig. 8(b) and (c) demonstrates that starting from three fea-
tures, UMPCA gives better recognition performance than all
the other four algorithms. These results again show the supe-
riority of UMPCA in low-dimensional projection space in un-
supervised classification of tensorial samples.

On the other hand, in this experiment, the number of fea-
tures that can be extracted by the UMPCA algorithm is lim-
ited to ten, the lowest mode dimension of the gait sample (from
Corollary 1). Such a small number prevents higher recognition
rate to be achieved. This limitation of UMPCA may be partly
overcome through the combination with other features to en-
hance the recognition results. For example, MPCA may be com-
bined with UMPCA through the relaxation of the zero-correla-
tion constraint, or PCA may be combined with UMPCA through
the relaxation of the projection. Beyond the maximum number
features from UMPCA, the heuristic approach in TROD may
also be adopted to generate more features. Furthermore, the ag-
gregation scheme introduced in [6] could also be a possible fu-
ture working direction.

C. Illustration of the UMPCA Projections

Finally, in order to provide some insights into the UMPCA al-
gorithm, Fig. 9(a) and (b) depicts, as gray-level images, the first
three EMPs obtained by UMPCA using the FERET database
with , and the USF gait gallery set, respectively. From the
EMPs for the face data, it can be seen that there is strong pres-
ence of structured information due to the multilinear nature of
UMPCA, which is different from the information conveyed by
the ghost-face-like bases produced by linear algorithms such as
eigenface [21] or fisherface [41]. The maximum variation (the
first EMP) mainly captures the difference between forehead area
and the rest of the facial image [with reference to Fig. 5(a)].
The second and third EMPs indicate that there are also signifi-
cant variations around the other facial feature areas, such as the
eyes, nose, and mouth. In the EMPs for the gait data, which are
third-order tensors displayed as their one-mode unfolded ma-
trices in Fig. 9(b), structure is again observed across the three
modes (column, row, and time). The first gait EMP indicates that
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Fig. 8. Detailed gait recognition results by PCA algorithms on the USF gait database (probe A): (a) CRR for individual gait samples, (b) rank 1 recognition rate
for gait sequences, and (c) rank 5 recognition rate for gait sequences.

Fig. 9. Illustration of the first three EMPs (in top-to-down order) obtained by
UMPCA from (a) the FERET database with� � �, and (b) the USF gait gallery
sequences (one-mode unfolding is shown).

the highlighted symmetric areas in frames encode the most vari-
ations, which roughly correspond to the boundary of the human
silhouette [with reference to Fig. 5(b)]. The second gait EMP
demonstrates that significant variation is encoded in the differ-
ence between the upper body and lower body movement. The
third gait EMP shows that there is also considerable variation in
the foot area, as expected. These observations provide insights
into the nature of the features encoded by UMPCA and offer a

better understanding of this algorithm’s performance when ap-
plied to certain data sets.

V. CONCLUSION

This paper has introduced a novel unsupervised learning
solution called UMPCA, which is capable of extracting uncor-
related features directly from tensorial representation through
a TVP. This feature extraction problem is solved by succes-
sive maximization of variance captured by each elementary
projection while enforcing the zero-correlation constraint. The
solution is an iterative method utilizing an alternating projec-
tion method. A proof is provided regarding possible restrictions
on the maximum number of uncorrelated features that can be
extracted by the UMPCA procedure. Experimentation on face
and gait recognition data sets demonstrates that compared with
other unsupervised subspace learning algorithms including
PCA, 2DPCA, CSA, TROD, GPCA, and MPCA, the proposed
UMPCA solution has achieved the best overall results with
the same number of features. Moreover, the low-dimensional
projection space produced by UMPCA is particularly effective
in these recognition tasks.

Authorized licensed use limited to: Haiping Lu. Downloaded on February 28,2010 at 21:55:57 EST from IEEE Xplore.  Restrictions apply. 



1834 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 11, NOVEMBER 2009

APPENDIX I
PROOF OF THEOREM 1

Proof: First, Lagrange multipliers can be used to trans-
form the problem in (13) to the following to include all the con-
straints:

(21)

where and are Lagrange multipliers.
The optimization is performed by setting the partial derivative

of with respect to to zero

(22)

Multiplying (22) by results in

(23)

which indicates that is exactly the criterion to be maximized,
with the constraint on the norm of the projection vector incor-
porated.

Next, a set of equations are obtained by multiplying

(22) by , , respectively

(24)Let

(25)

and use (16) and (17), then the equations of (24) can be
represented in a single matrix equation as the following:

(26)

Thus

(27)

Since from (17) and (25)

(28)

equation (22) can be written as

Using the definition in (15), an eigenvalue problem is obtained
as . Since is the criterion to be maximized,

the maximization is achieved by setting to be the (unit)
eigenvector corresponding to the largest eigenvalue of (14).

APPENDIX II
PROOF OF COROLLARY 1

Proof: To prove the corollary, it is only needed to show
that for any mode , the number of bases that can satisfy the
zero-correlation constraint is upper-bounded by .

Considering only one mode , the zero-correlation constraint
for mode in (13) becomes

(29)

First, let and the constraint be-
comes

(30)

Since , when , the set ,
forms a basis for the -dimensional space and there is no so-
lution for (30). Thus, .

Second, let and the constraint be-
comes

(31)

Since , are orthogonal, ,
are linearly independent if the elements of are not all

zero. Since , when , the set ,
forms a basis for the -dimensional space

and there is no solution for (31). Thus, .
From the above, if the elements of

are not all zero, which is often the case as long as the
projection basis is not initialized to zero and the elements of
the training tensors are not all zero.
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