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Abstract. The problem of curve matching appears in many application domains, like time series analysis, shape
matching, speech recognition, and signature verification, among others. Curve matching has been studied extensively
by computational geometers, and many measures of similarity have been examined, among them being the Fréchet
distance (sometimes referred in folklore as the “dog-man” distance).

A measure that is very closely related to the Fréchet distance but has never been studied in a geometric context
is the Dynamic Time Warping measure (DTW), first used in the context of speech recognition. This measure
is ubiquitous across different domains, a surprising fact because notions of similarity usually vary significantly
depending on the application. However, this measure suffers from some drawbacks, most importantly the fact that
it is defined between sequences of points rather than curves. Thus, the way in which a curve is sampled to yield
such a sequence can dramatically affect the quality of the result. Some attempts have been made to generalize the
DTW to continuous domains, but the resulting algorithms have exponential complexity.

In this paper we propose similarity measures that attempt to capture the “spirit” of dynamic time warping while
being defined over continuous domains, and present efficient algorithms for computing them. Our formulation leads
to a very interesting connection with finding short paths in a combinatorial manifold defined on the input chains,
and in a deeper sense relates to the way light travels in a medium of variable refractivity.
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1. Introduction

The problem of curve matching studies ways of mea-
suring the similarity between two curves. Curve mat-
ching appears in a variety of different domains; analysis
of stock market trends, protein shape matching, speech
recognition, computer vision, etc. The main questions
associated with curve matching in a specific domain
are: (1) what is a good measure of similarity between
curves? (2) how can we compute it (or some approxi-
mation of it) efficiently? Other questions that are often
of interest are: given a database of curves and a candi-
date curve, can we find a nearest neighbor to this curve
in the database? can we cluster curves with respect to
a given measure of similarity?

Curve matching has been studied extensively in the
domain of computational geometry. Here the curves
are usually assumed to be represented as polygonal
chains in the plane. The measures that have been used
to compare them include the Hausdorff distance [2], the
turning curve distance [9, 15], and the Fréchet distance.

Dog-Man Measures. The Fréchet distance [3–6, 13,
14, 20, 40] has received much attention as a measure
of curve similarity. It belongs to a general class of dis-
tance measures that are sometimes called “dog-man”
distances. This nickname arises for the following rea-
son. Picture a man and a dog, each of whom is posi-
tioned at the start of one of the two given curves. The
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man holds the (elastic) leash that the dog is tied to. At
time 0, the man and the dog start walking on their re-
spective curves towards the respective endpoints. Nei-
ther of them can teleport i.e jump from one point to the
next, and in most settings (see [20] for an exception),
both the man and dog are constrained to move (mono-
tonically) forward along the curve, although they can
move at arbitrary speeds relative to each other. We say
that a motion of dog and man is legal if it satisfies the
above constraints. The distance between the two curves
is now defined as a function of the leash length (or the
leash vector itself), typically minimized over all legal
motions. For example, the Fréchet distance itself is the
minimum (over all trajectories) of the maximum leash
length needed for a fixed trajectory. The general intu-
ition behind the dog-man measures is that since they
are defined over continuous parametrizations, they pre-
serve the notion of continuity along the curve and thus
are well suited to measuring curve similarity.

Sum Measures and Dynamic Time Warping. The
Fréchet distance is a max measure; it is defined in
terms of the maximum leash length over a parametriza-
tion. This dependence on the maximum value can often
lead to non-robust behavior, where small variations in
the input can distort the distance function by a large
amount. Sum- (or average-based) measures are a way
of smoothing such distortions, and this motivates our
effort. We note that traditionally, it has been harder to
compute such sum-measures than max-measures.

One sum-measure that has been in widespread use
in various application areas is expressible as a “dog-
man” distance. It is known as Dynamic Time Warping
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Figure 1. Matching two curves using the discrete DTW (top) and matching the same curves using continuous DTW (bottom). (a) shows two
curves with a slight difference. (b) and (c) demonstrate the matching results under two different samplings of the curves. The numbers shown in
the images are the warping distance of the matching. Note that the discrete DTW can lead to dramatically different results due to the sampling
while the continuous DTW is not significantly affected by the sampling.

(DTW), and was first proposed in the 60s as a measure
of speech signal similarity [34]. Since then, it has been
used in a variety of contexts: in databases [17, 21], in
computer vision [29, 30, 36, 39], in protein structure
matching [41], and in time series clustering and data
mining [24, 32, 35]. Serra and Berthod [39] propose
a continuous dynamic time warping technique for sub-
pixel contour matching. Munich and Perona [29] ex-
plore the use of dynamic time warping as a measure of
signature similarity and pose the question of whether
continuous versions of these measures can be defined.
However, the complexity of their algorithms grows
combinatorially and heuristic constraints are needed
to make the problem tractable. In the dog-man setting,
the DTW distance between two curves (defined as se-
quences of points) is the sum of the leash lengths mea-
sured at each (discrete) position (minimized over all
trajectories).

The DTW is very easy to compute. Given polygonal
curves represented by the sequences of the vertices,
of length m and n respectively, a simple dynamic
programming algorithm yields the optimal solution
in O(mn) time. Given its wide usage in different
domains, we would like to use the DTW as a mea-
sure of curve similarity. However, the DTW is defined
over sequences of points, and is thus not immediately
suitable for general curve matching. One could con-
ceivably sample the input curves, and then compute
the DTW. However It is not hard to construct exam-
ples of curves that are almost identical to each other
but may appear quite different under the DTW be-
cause of an incorrect sampling of points on each curve
(see Fig. 1).
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1.1. Our Work

Our goal in this paper is to present continuous dy-
namic time warping measures for computing curve
similarity. We describe exact and approximate algo-
rithms for computing the continuous warping distance,
and demonstrate their utility for practical applications.

Shortest Paths. The continuous DTW is strongly re-
lated to paths on 2D manifolds. We define a universal
combinatorial manifold in terms of two input polygo-
nal chains: we can represent all possible mappings be-
tween two curves as paths on the manifold. We define
a class of continuous generalizations of the DTW, and
show that computing any of these variants corresponds
to computing an appropriately weighted geodesic on
the universal manifold. In the special case of a uni-
form weight function, the problem reduces to com-
puting ordinary shortest paths in a polyhedral surface,
and we present an algorithm that computes this in time
O(nm(m +n) log(m +n)), where m and n are the num-
ber of segments in the two curves. We also present an
approximation algorithm that runs in time O(mnr2),
where r is a discretization parameter that controls the
approximation ratio.

Light Fields. An interesting aspect of our approach is
the connection it draws between dynamic time warping
and light paths in a heterogenous medium. This anal-
ogy gives us a simple proof of the shortest path result
described above, and in general provides an alternate
method to computing generalized forms of dynamic
time warping between curves.

Paper Outline. We define our continuous time warp-
ing measures in Section 3, and characterize them in
terms of shortest paths along a combinatorial mani-
fold. In Section 4 we establish the analogy between the
continuous measures and light flow. Exact and approxi-
mate algorithms are presented in Section 5. We mention
in Section 6 possible strategies for solving generalized
time warping problems via the use of the fast march
method of Sethian. Implementation details of our al-
gorithms are described in Section 7. Finally in Section
8 we demonstrate the application of our measures to
the problem of signature verification.

2. Definitions

We denote vectors as bold faced letters (a, b, . . . ). A
vector v will have components vx , vy .1 The derivative

of a function f (t) with respect to the parameter t will
be denoted as ḟ (t). We denote the standard Minkowski
sum of two point sets A, B as the set A ⊕ B = {a+b |
a ∈ A, b ∈ B}, and define A � B = A ⊕ (−B).

Let T = (t1, t2, . . . tn) be a sequence of time steps.
Let A = (ai) and B = (bi) be two functions defined
over T i.e ai = A(ti ) and bi = B(ti ). We assume
that these are the vertices of polygonal paths, which
approximate input curves. The Dynamic Time Warping
(DTW) measure dDTW is a distance defined on these
functions A and B to be:

dDTW(A, B) = min
σ

∑
σk=(i, j)∈σ

‖bj − ai‖ (1)

where σ = (σ1, σ2, . . . , σm), σi ∈ [1 . . . n]2 is a se-
quence satisfying:

Monotonicity: For all (a, b), (c, d) ∈ σ where a ≤ c,
we have b ≤ d .

Continuity: For σi = (xi , yi ), σi+1 = (xi+1, yi+1), we
have xi+1 − xi ≤ 1, yi+1 − yi ≤ 1.

The underlying norm used is typically the �2 norm,
although this is not essential.

A translation-invariant version of dDTW [29] can be
defined as follows. Let σk = (i, j), and let vk = bj−ai.
We can rewrite Eq. (1) as

dDTW(A, B) = min
σ

∑
σk∈σ

‖vk‖

The measure d̃DTW (A, B), denoting the translation-
invariant DTW, is now defined as follows:

d̃DTW(A, B) = min
σ

∑
0≤k<m

‖vk+1 − vk‖

As is easily observed, this measure is invariant when
B is translated.

3. A Universal Manifold

Let a polygonal chain A : [0, m] → R2 be a curve such
that for each i ∈ {0, . . . , m − 1}, A|[i,i+1] is affine, i.e.
A(i + λ) = (1 − λ)A(i) + λA(i + 1), 0 ≤ λ ≤ 1. For
the purpose of this paper, A and B will be polygonal
chains. For such a chain A, denote |A| = m. Let Ai

denote the segment A|[i,i+1], and Ai(λ) denote the point
(1 − λ)A(i) + λA(i + 1).

We define a combinatorial manifold M(A, B). Let
|A| = m, |B| = n. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let the
patchPi j be defined as the set Bj�Ai (see Fig. 2). Patch
Pi j shares edges with the three patches Pi, j+1, Pi+1, j ,
Pi−1, j , and Pi, j−1 (see Fig. 3). Since we define a patch
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Figure 2. A pair of segments Ai and Bj and the path Pi, j constructed from them. The four vertices of the patch are (i, j), (i, j + 1), (i + 1, j +
1) and (i + 1, j).
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Figure 3. A pair of curves and the corresponding manifold M(A, B). The bold line is the shortest path from (0, 0) to (2, 2).

as a closed surface, diagonally adjacent patches Pi, j

and Pi+1, j+1 share a point. It is possible that a patch
degenerates into a line (for example if Ai and Bj are
isometric and parallel); this will not affect the construc-
tion of the surface (the reader may realize at this point
that the manifold M(A, B) is a PL 2-manifold [8]). It
is important to remember that this is not an ordinary
manifold in that patches may intersect each other and
be degenerate; however its local adjacency properties
are all that we need for the algorithms we describe.

Each patch has its own local coordinate system.
For a point p = Bj(μ) − Ai(λ), its coordinates on
Pi j are (λ, μ). Thus any curve C on Pi j defines a
parametrization α along the segments Ai , B j , and
monotonicity of α is equivalent to monotonicity
of C.

3.1. A Continuous Measure

We now define a class of continuous time warping
measures on curves A, B. Let α : [0, m] → [0, n]
be a continuous monotone function, and let vα(t) =
B(α(t))−A(t). Note that vα(t) is a function from [0, m]
to M(A, B). Let f (v) : M(A, B) → R2 be a weight

function. We define the measure d f (A, B) as

d f (A, B) = min
α

∫ m

0
f (v) ‖v̇α(t)‖dt (2)

For the special case f ≡ 1,

d1(A, B) = min
α

∫ m

0
‖v̇α(t)‖dt (3)

It can be shown that both measures are metrics.
The measure d1 has the additional property of being
translation-invariant: d1(A, B) = d1(A + t, b), where
t is an arbitrary vector. It can be thought of as the cont-
inuous analogue of d̃DTW.

Intuitively, the key term in d f (A, B) is ‖v̇α(t)‖. As
we see in Fig. 4, the rate of change of vα(t) captures
the variation in the parametrization, and the weight
function f allows us to penalize this variation non-
uniformly.

Let f (x, y) : R2 → R be a function on the plane,
and let C be a curve in R2. The integral∫

C
f (x, y)ds

denotes the path integral of f over C where ds is the
path element along C. If C is written in terms of a
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Figure 4. The rate of change of vα(t).

parameter t as C = C(t), t ∈ [0, m], the path element
ds along C can be written as ds = ‖Ċ(t)‖dt and the
above path integral can be written as ([10])∫

f (Cx (t), Cy(t)) ‖Ċ(t)‖dt

Given a parametrization α, the function vα(t) is a
curve in M(A, B). Thus, d f (A, B) can be written as a
path integral in M(A, B).

3.2. Finding an Optimal Path

In order to evaluate d1, we need to determine the nature
of the optimal path in M(A, B).

Lemma 3.1. Let χi : [0, 1] → Ai be monotone
parameterizations of the segments A1, A2 such that
χi (t) = Ai(0) + (Ai(1) − Ai(0))

∫ t
0 αi (u)du where

αi (t) ≥ 0 ∀t ∈ [0, 1] and
∫ 1

0 αi (u)du = 1. Let � =∫ 1
0 ψ( d

dt (χ2(t) − χ1(t)))dt where ψ : R2 → R2 is a
convex function. Then � is minimized when α1(t) =
α2(t) = t .

Proof: Since d
dtχi (t) = αi (t)[Ai(1)−Ai(0)], we have

� =
∫ 1

0
ψ(α2(t)A2(1) − A2(0) − α1(t)A1(1)−A1(0))dt

≥ ψ

( ∫ 1

0
α2(t)(A2(1) − A2(0)) − α1(t)(A1(1)

−A1(0))dt

)
= ψ((A2(1) − A2(0)) − (A1(1) − A1(0)))

where the inequality follows from Jensen’s inequality.
We can attain this minimum value by setting αi (t) = t .

The norm ‖ · ‖ is convex, and thus the conditions
of Lemma 3.1 apply. Thus the optimal path is the uni-
form parametrization. Substituting α in Eq. (3) yields
the following result.

Lemma 3.2. If A, B consist of single segments, then

d1(A, B) = ‖(B(1) − A(1)) − (B(0) − A(0))‖

But this is merely the shortest Euclidean distance
between the points (0, 0) and (1, 1) on M(A, B). Ex-
tending this over all patches, this yields the following
theorem.

Theorem 3.1. d1(A, B) is equal to the length of the
shortest monotone path in M(A, B) from the point
(0, 0) on P0,0 to the point (m, n) on Pm,n.

Proof: Define a path π onM to be good if it is mono-
tone, connects the point (0, 0) onP0,0 to the point (m, n)
on Pm,n , and its intersection with every patch of M is,
if not empty, consisting of a single edge. Note that
every good path corresponds to a matching between
A and B, (i.e., the function α() used in Eq. (3)), and
the const of the corresponding matching is, according
to Lemma 3.1, equals to the length of π . In particu-
lar, there is path π∗ that corresponds to the optimum
matching. Clearly this is exactly the shortest good path.

4. Light Fields and the Eikonal Equation

In general, the form of the function f will determine
our ability to compute d f (A, B). Traditional variational
methods can be employed to solve the functional [11],
but it is typically hard to do this for arbitrary functions.

However, there is an alternative formulation of the
above path integral. Consider a two-dimensional re-
fractive medium whose refractive index at the point
(x, y) is given by the function f (x, y). Then the path
S that a light beam will take to go from a point a to a
point b in this medium is the curve S from a to b that
minimizes the path integral2 [12, Section 3.1]∫

S
f (x, y) ds

Lemma 4.1. Let Ai and Bj be two segments, and
let Pi j be the associated patch. Assume that the path
that light takes to travel from (i, j) to (i + h, j + k),
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(h, k > 0) in Pi j is monotone with respect to the patch.
Then d f (Ai, Bj) is equal to the length of the path that
a light beam will take from (0, 0) to (1, 1) in a medium
isometric toPi j , where the refractive index of any point
(x, y) is f (x, y).

Light flow in nonhomogenous fields has been stud-
ied extensively [12], and working forwards from
Maxwell’s electromagnetic equations, the following
equation can be derived [12, Section 3.1]:

‖∇F‖ = f (4)

This equation is called the eikonal equation, and the
function F is called the eikonal.3 For isotropic media,
F can be thought of as describing the geometric wave-
fronts that propagate the light rays; more formally, if
s is a unit vector in the direction of the trajectory of a
ray of light in this field, then s = ∇F/ f .

This formulation provides an alternate proof for
Lemma 3.1 that does not rely directly on the calcu-
lus of variations. Setting f ≡ 1, Eq. (4) can be written
as

‖∇F‖ = 1

The solution to this equation consists of the family
of curves

t2 + u2 = const

In other words, the curves orthogonal to the light
paths are circles around the origin, implying that the
light paths are straight lines emanating from the origin,
hence in the optimal solution α1(t) = α2(t) = t , as
already shown in Lemma 3.1.

5. Algorithms

In this section we discuss exact and approximation al-
gorithms for computing d1(A, B). For clarity, we re-
fer to the traditional DTW method as discrete DTW
(DDTW) and our continous measure as CDTW.

5.1. An Exact Algorithm

Mitchell, Mount and Papadimitriou [28] presented an
algorithm running in O(k2 log k) time to compute s-t
shortest paths on a general polyhedral surface with k tri-
angles. This was subsequently improved by Chen and
Han [16] to O(k2), and recently, a result by Kapoor [22]

showed a bound of O(k log2 k). It is easy to verify that
the algorithm of [28] can be modified to compute a
monotone shortest path. Also note that by the unfold-
ing property of shortest paths, we only need the com-
binatorial structure of the polytope and the geometry
of each face. Let |A| = m and |B| = n. There are
O(mn) faces in the instance of the shortest path prob-
lem that we construct, and hence a naive bound on
the running time of the algorithm of [28] is O(m2n2).
A more careful look at the algorithm reveals that the
actual running time is O(Q log Q), where Q is the to-
tal number of subintervals of edges of triangles of the
manifold. These subintervals are obtained by splitting
edges based on the combinatorial structure of shortest
paths reaching points of this edge. We show that in our
setting Q is only O(mn(m+n)). Thus the running time
of the algorithm of Mitchell et al. [28] in our setting is
only Q = O(mn(m + n) log(mn)).

Bounding Q. We define the left vertical wall of the
patch Pi, j to be the edge the patch shares with Pi+1, j .
We define the i-vertical wall �i of M(A, B) to be the
union of the left vertical wall of all pathes Pi, j (for
j = 0, . . . n − 1). This is a connected polygonal path.
See Fig. 5 for an illustration. Fix 1 ≤ i ≤ n and x ∈
�i , and consider the monotone shortest path from the
origin to x . Let σ (x) be the sequence of patches of
M(A, B) that this path meets, in the order that they
appear along the path. We divide �i into maximally
connected intervals that form equivalence classes for
σ (x), i.e into subintervals such that for all points x in
a subinterval, σ (x) is fixed.

Let y1, y2, . . . yk be points along �i that have pair-
wise distinct patch sequences σ (yr ) (1 ≤ r ≤ k).
Note that to specify σ (yr ), it suffices to specify above
which corners of cells of {Pi j }, σ (yr ) pass, and be-
low which corners. Observe (as in [28]) that σ (yr ) is
disjoint to σ (yr+1), and thus there must be a corner of a

A 0

A 2 B 0

B 2

A 4

A 1

B 1

B 3

A 3

P
 2,1

P
 2,2

P
 2,0

Figure 5. A vertical wall (i = 2) is shown as a bold line on the
manifold M(A, B). The wall is composed of the left edges of patch
P2,0,P2,1, and P2,2.
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patchPi ′, j ′ that σ (yr ) passes below, and σ (yr+1) passes
above. Thus there must be at least k corners of cells of
{Pi j } below σ (yk), implying that k ≤ mn. Summing
this numbers for all m vertical walls {�1 . . . �m−2}, this
bound implies that the total number of maximally con-
nected intervals is O(mn(m + n)). Since the running
time of the algorithm is directly proportional to this
quantity, we obtain the result (exchanging the rules of
m and n if needed).

Theorem 5.1. Given two polygonal chains A, B,
where |A| = m, |B| = n, and m < n we can com-
pute d1(A, B) in time O(nm2 log(n)).

5.2. An Approximation Algorithm

The exact algorithm described above is slow in prac-
tice, mainly due to problems in scaling existing code
[23] for computing shortest path on a terrain. It is not
clear whether a careful implementation of the algo-
rithm would resolve this problem. Thus, in this section
we present a fast algorithm that runs in time linear in
m · n and approximates d1 to any desired factor.

B 0

A 2 A 1

A 0

B 1

B 2

(0,0)

(2,2)

(a)

B 2

B 0

A 2 A 1

A 0

B 1

(2,2)

(0,0)

(b)

Figure 6. Steiner points and 
-paths on a manifold. (a) UNIFORM placement scheme and (b) LENGTH placement scheme. The dashed line
is the optimal path d1 and the bold line is the shortest 
-path that approximates d1.

r
1

el

eb

er

et
p i

t

P

p

(a)

p
t
i

p
r
1

l

eb

r

et

e

e

P
(b)

Figure 7. (a) Possible paths to a point on the top edge of a patch P in the CDTW approach. (b) Possible paths to a point on the top edge of a
patch P in the DDTW approach.

Lanthier et al. [27] compute an approximate weigh-
ted geodesic shortest path between two points on a
polyhedron surface P by adding additional vertices
(known as Steiner points) on the edges of P , breaking
them into shorter edges. These points are connected via
straight segments, and the Dijkstra’s algorithm [18] is
then used to find the shortest path. Here, we employ a
similar idea of adding Steiner points to our problem.
However, the monotonicity requirement restricts the
set of paths that we need to consider, and allows us to
compute an approximat shortest path by using dynamic
programming, which is much easier to implement and
is faster than Dijkstra’s method by a factor of log(mn).

We start by placing Steiner points on the edges of
the manifold M(A, B) (see Fig. 6). Let S be the set of
Steiner points and 
 = S ∪ A ∪ B. A geodesic path
is called a 
-path if it is monotone and contains only
vertices from 
. Let 
(p) be a 
-path from the origin
(0, 0) of M(A, B) to a point p ∈ 
. Observe that d1

can now be approximated by the shortest 
-path to the
point (m, n) onM(A, B). LetP be a patch ofM(A, B).
We denote the four edges of P (left, right, bottom and
top) as el , er , eb, and et respectively (see Figure 7 for an
illustration). We also denote the i th point on an edge
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ex (x ∈ {l, r, b, f }) as pi
x . Monotonicity forces any


-path of a point p on el or et to pass through eb or
er . Thus if the shortest 
-paths to all the points on er

and eb are computed, the shortest 
-path to p can be
easily found by considering all the possible paths from
the points on eb and er (see Fig 7(a)). Specifically, the
shortest 
-path to p can be computed as,

dmin(
(p)) = arg min
p′

{dmin(
(p′)) + |pp′|} (5)

where p′ ∈ eb ∪ er and pp′ is locally monotone.
Dynamic programming can be used to compute the

shortest 
-paths to all the points on M(A, B). The
pseudo code is presented in Algorithm 1.

Lemma 5.1. Given two polygonal chains A and B
where |A| = m and |B| = n, then d1(A, B) can be
approximated by a monotone shortest path inM(A, B)
and computed in O(r2mn) time where r is the number
of Steiner points added on each edge in M(A, B). The
absolute difference in cost between the approximate
and optimal paths is at most L(m + n)/r , where L is
the length of the longest segment in either of the two
chains.

Proof: For each patch, we need to compute the short-
est 
 paths for 2(r + 1) points and for each point, we
spend O(r ) time. Hence the time spent on each patch is
O(r2). We have a total of m · n patches, so the running
time bound holds. The approximation achieved by the
algorithm follows the proof in [27] directly.

The approximate algorithm proposed above has the
same running time as the discrete DTW algorithm when
the same number of Steiner points are added to the input
segments.

Remark 5.1. It is important to mention that although
our approach is based on discretization, it discretizes
the manifold, rather than the input segments. The
discrete DT W approach would never yield an arbi-
trarily close approximation of the shortest path if the
discretization or resampling is not done appropriately.
Figure 7 illustrates such an example. The discrete
approach restricts the warping paths to only three “di-
rections”: left, up and diagonal, so no path can go from
p1

r to pi
t directly, which is the shortest path from p1

r

to pi
t on the patch P . Simply adding more points on

the edges would not improve the approximation. In
contrast, our continuous measure only requires that the
warping paths are monotone. As shown by Lemma 5.1,
as long as there are enough Steiner points added on the
manifold, the approximation can be made arbitrarily
close to the true answer.

6. df(A,B) and The Fast-March Algorithm

Solutions to the eikonal equation can in general be non-
differentiable (an easy example is the case of light trav-
elling through an interface between media of different
refractivity), and thus computing closed form solutions
analytically can be hard in all but special cases. In addi-
tion, issues of numerical accuracy need to be addressed
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very carefully. Among the algorithmic solutions for
weighted shortest path problems, the methods of [7]
express running terms in terms of numerical properties
of the input (such as the ratio of the longest edge to the
shortest edge etc.).

In this section, we discuss a technique first pro-
posed by Sethian [38], and applied by Kimmel and
Sethian [26] to solve the eikonal equation numerically
in the context of computing weighted shortest paths.4

The advantage of this method (called the fast march-
ing method) are that the solution it provides converges
monotonically to the exact answer as the error parame-
ter tends to zero, and thus is a provably correct approx-
imation scheme. In addition, the method itself works
by imposing a uniform grid (or triangulation) on the
surface, and runs in time independent of numerical pa-
rameters of the surface.

The skeleton of the algorithm is a grid update proce-
dure that expands out from the starting point in a fash-
ion much like the Dijkstra [18] shortest path algorithm
on graphs. At each stage, the unvisited grid point with
the smallest weight is visited, and all its neighbours are
updated according the values at their neigbours.

The crucial difference between this technique and a
standard Dijkstra-type algorithm is in the step where
weights are updated. This issue is discussed at length in
[Set99, Section 8.6.1]; the basic idea is that by using an
update mechanism based on a second order finite dif-
ference operator, the method guarantees that the new
distance computed is a smooth interpolation of the val-
ues inside a grid cell.

The algorithm is extremely easy to implement, re-
quiring only standard heap data structures, and runs in
time O(mn/ε2), where ε is the length of the subdivision
of each segment. Note that unlike other algorithms that
make use of these so-called Steiner points, no careful
placement of points is required. The field F̃ computed
can be shown to converge monotonically to the ex-
act solution as the number of grid points increase, and
the process is second order convergent. The error in
the computation (for example the �2 distance between
the approximate function F̃ and the exact functionF) is
linear in the length of the longest edge on the manifold.

7. Implementations

In order to implement the exact algorithm of
Section 5.1, we chose to utilize Kaneva’s implemen-
tation [23] of Chen and Han’s shortest path algorithm
[16]. This is one of the few publicly released programs
for computing shortest paths on polyhedra. We con-

struct the combinatorial manifold M(A, B) discussed
in Section 3 for the curves A and B and use Kaneva’s
program to find the continuous dynamic time warping
path (i.e the shortest path) on M(A, B). This path is
then used to match the two curves A and B. Figure 1
illustrates such a matching. Unfortunately, this imple-
mentation runs very slowly when the number of faces
of the polyhedron exceeds a few thousands, and it was
impractical to use it for large data sets. We therefore
implement the approximate algorithm described in 5.2
and use it to conduct all the experiments below.

The approximation algorithm relies on placing
Steiner points on the edges of the manifold. To see how
the placement of Steiner points affects the approxima-
tion, we experimented with two schemes of placing
Steiner points. One scheme assigns the same number
of points to each edge and the other determines the
number of points to be placed for an edge by its length.
In both schemes, steiner points are uniformly spaced on
edges. We call the former “UNIFORM” and the latter
“LENGTH” (see Fig. 6). We also include the discrete
DTW algorithm with resampling for comparison.

We randomly generated a small data set of 50 curves.
Each curve has 20 points and the maximum length of a
segment on the curve is 50. For each pair of curves,
we computed the approximate warping distance by
using different average number of Steiner points per
edge and compared it to the optimal distance. The
optimal distance is approximated by the warping dis-
tance computed from the continuous DTW algorithm
using 500 Steiner points per edge with the “LENGTH”
placement scheme. Figure 8 shows the average relative
difference between the approximate and the optimal
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(a) (b)

Figure 9. Two examples of signature data. In each picture, two
signatures made by the same person are depicted.

warping distance for the two placement schemes. Note
that the continuous measure can approximate the opti-
mal distance much better than the discrete measure un-
der both schemes. The continuous measure approaches
the optimal distance slightly more quickly under the
“UNIFORM” scheme than the “LENGTH” scheme.
It is likely that the bound we obtain can be improved
slightly using an expander technique as mentioned in
the work of Lanthier et al. [27].

The continuous measure can yield a very good ap-
proximation of the optimal warping path (above 99%)
by using 5 Steiner points per edge. Unless specified,
this number is used for both the continuous and dis-
crete DTW algorithms in the experiments that follow.

8. Signature Verification

Dynamic time warping has been widely used in signa-
ture verification [29, 30]. However, the quality of the
DDTW measure relies heavily on the sampling of sig-
natures. In practice, inappropriate or even poor sam-
pling of signatures may occur from time to time for
various reasons such as the use of different tracking de-
vices or the change of signing behaviors (for example,
signing heavily or softly or emotionally) of the signer.
A possible solution for this problem is to resample the
curves/signatures (for example, using spline interpo-
lation) before matching them. However, there is no
general principle regarding how the resampling should
be done to achieve desired results. Unlike DDTW, the
CDTW measure can truly capture the similarity be-
tween two signatures regardless of the way of sam-
pling, thus making itself a more robust and reliable
measure for signature verification. As we demonstrate
later, the continuous measure yields much more con-
sistent performance than DDTW when the signatures
are insufficiently sampled. We first briefly describe the
data sets we use in the experiments.

(a) (b)

Figure 10. The genuine signatures compared with forgeries.

(a) (b)

Figure 11. The genuine signatures compared with random signa-
tures.

Signature Database. The database was collected by
Munich [31] and includes two sets of signatures cap-
tured by a camera-based tracking system. The first set
consists of signatures from 56 subjects and each sub-
ject provides 25 signatures. The second set consists of
signatures from 50 subjects and each subject provides
30 signatures. In addition, both sets include 10 skilled
forgeries for each subject. Readers are referred to [31]
for details.

Figures 9–11 show some samples from the database.
Table 1 summarizes the results of using our measure
to compute the distance between the samples. There is
a significant difference between the distance between
similar signatures and the distance between eitheran-
domly chosen signatures or a signature and its forged
version. Although these are only a few examples, they
demonstrate that the continuous time warping measure
effectively captures an intuitive notion of curve similar-
ity. We now evaluate the performance of this measure
in detail.

Data Simplification. Our purpose is to compare the
quality of the DDTW and the CDTW measures on
insufficiently sampled data. We approximate the sig-
natures in the database with fewer points through
curve simplification. Such signatures are called sim-
plified signatures. There are many efficient and ef-
fective approaches proposed for simplifying curves or
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Table 1. Approximation of of the optimal distance d1 between
pairs.

Pair being compared Num. Steiner points per edge
0 5 10

Same (Fig. 9(a)) 119.41 87.96 81.163
Forgery (Fig. 10(a)) 218.67 136.85 131.54
Different (Fig. 11(a)) 413.08 313.86 306.09

Same (Fig. 9(b)) 131.52 98.62 94.56
Forgery (Fig. 10(b)) 213.42 160.27 157.52
Different (Fig. 11(b)) 315.07 266.50 264.61

approximating time series [1, 25]. As our focus here
is to demonstrate the quality of our measure for data
insufficiently sampled, we simply choose the Douglas-
Peuker algorithm [19], one of the most popular curve
simplification algorithms. Note that the simplification
also brings other extra benefits such as eliminating
small discontinuities or movement introduced by the
measurement and saving storage that could be a crit-
ical issue for some verification systems with a lot of
users. This technique is also often used when index-
ing very large time series database [25, 33]. In our
experiments, when a tolerance of 0.2 is used, the sim-
plification reduces the number of points for a signature
by 30%–50% and only slightly changes the shape of
the signature. (The minimum width and height of the
signatures in the database are 22 and 14, respectively.
The average width and height are 82 and 54.).

Training and Testing. We choose the first 10 true signa-
tures of each person as the training data. Similar to [30],
we do pairwise alignments to pick a reference signature
that yields the minimum average alignment cost with
the other signatures. We consider both random and
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Figure 12. Error tradeoff curves for DDTW and CDTW using skilled forgeries. The EERs are marked as circles in the figure.

Table 2. Equal Error Rate (%) computed from the original sig-
natures and the simplified signatures. 5 Steiner points per edge are
used in both algorithms.

Forgery Skilled Random

Algorithm DDTW CDTW DDTW CDTW

Data Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
Original Sig. 6.1 8.8 5.3 8.0 1.6 3.0 1.6 2.8
Simplified Sig. 6.5 9.2 5.8 8.2 1.7 3.3 1.6 2.9

skilled forgeries in our experiments. A random forgery
is a signature from a subject other than the subject that
the signature to be verified belongs to. The database
can provide each subject up to 2,000 random forgeries,
but only 10 skilled forgeries.

When evaluating the performance of a system, one
indicator that is often used in signature verification lit-
eratures is the error tradeoff curve (see Fig. 12). This
parameter depicts the false acceptance rate (FAR) as a
function of the false rejection rate (FRR). Here, FAR
measures the number of forgeries being accepted as
genuine ones by the system while FRR refers to the
number of genuine signatures being recognized as forg-
eries. The error tradeoff curve is traditionally charac-
terized by its equal error rate (EER), the error rate at
which the FAR is equal to FRR. A lower EER repre-
sents better performance.

Table 2 shows the EERs computed from the orig-
inal signatures and the simplified signatures by using
5 Steiner points per edge. As we can see, the CDTW
measure performs only slightly better than the DDTW
measure on the original data, which suggests that the
signatures in the original data are well sampled. As
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Figure 13. EERs under different number of Steiner points used (random forgery).
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Figure 14. EERs under different number of Steiner points used (skilled forgery).

expected, the skilled forgeries are shown to be more
difficult to be verified than the random ones in both
of the two measures. In addition, both measures yield
similar results on the original and the simplified data,
demonstrating that signature simplification is a feasible
way in practice.

Figures 13 and 14 show how the EERs of using
random and skilled forgeries vary with the number of
Steiner points per edge added in the DDTW and CDTW
algorithms. We observe that although the performance
difference between DDTW and CDTW decreases as
the number of points per edge added increases, CDTW
demonstrates more consistent results than DDTW. This
indicates that the CDTW measure is less sensitive to
the sampling of the signatures and hence a more robust
measure in practice.

We have thus demonstrated that the CDTW is a more
robust measure for insufficiently sampled data than the
traditional DTW measure. In addition, it allows us to
use simplified reference signatures for signature verifi-
cation, which are favored by some verification systems
in which storage is a critical resource.

9. Conclusions

Our goal in this paper was to study measures of curve
similarity in the “dog-man” setting. Our study of “con-
tinuous” dynamic time warping was motivated by the
drawback of other methods (e.g. Fréchet distance and
dynamic time warping) and the resulting formulations
in terms of weighted shortest paths demonstrate that
sum-based measures can have rich structure, as well as
efficient algorithms.

The general nature of d f (A, B) (as modulated by the
weight function f ), suggests that this measure might be
utilized in a wide range of applications. We have shown
the quality of this measure in signature verification.
One interesting future direction would be to further
evaluate the performance of the CDTW measure on
other data sets such as handwritten recognition data
[37].

Another promising direction is in the context of pro-
tein backbone matching, in which we wish to compare
the similarity of proteins represented as chains (in three
dimensions) of carbon atoms (the Cα atoms). It would
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be interesting to explore the efficacy of this measure in
capturing the similarity of such backbones.
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Notes

1. In this paper, all vectors will be in R2.
2. This is a version of Fermat’s principle of the shortest optical

length.
3. According to [12], the word comes from the Greek word for

‘image’.
4. This technique has been applied to a wide class of geometric

problems, like motion planning, surface reconstruction, and com-
puting shape differences. The interested reader is referred to [38]
for further details.
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