YOUNG DIAGRAMS AND PARTIAL FLAG VARIETIES

CHI-NUO LEE AND ARTHUR WANG

1. Introduction

Consider $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$, a fixed ordered basis of \mathbb{C}^{n}. Recall that the standard flag of \mathbb{C}^{n} is defined by $E_{1} \subset E_{2} \subset \cdots \subset E_{n}$, where $E_{k}=\operatorname{span}\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}$. We now introduce partial flag varieties. Let $m=\left(m_{1}, m_{2} \cdots, m_{k}\right)$, where $0<m_{1} \leq m_{2} \leq \cdots \leq m_{k}<n$. Let $X=F l(m, n)$, a partial flag variety, then $X=\left\{\left(V_{m_{1}} \subset V_{m_{2}} \subset \cdots \subset V_{m_{k}} \subseteq \mathbb{C}^{n}\right) \mid \operatorname{dim}\left(V_{m_{i}}\right)=m_{i}\right\}$. Let $E_{m}=\left(E_{m_{1}} \subset E_{m_{2}} \subset \cdots \subset E_{m_{k}}\right) \in X$ and let P denote the stabilizer of E_{m}, i.e. $\left\{g \in G L(n) \mid g . E_{m}=E_{m}\right\}$. Let $m_{0}=0$ and $m_{k+1}=n$, then P is the group of invertible block upper triangular matrices, where the dimension of the $i^{\text {th }}$ block is $m_{i+1}-m_{i}$. The following are other key subgroups of $G L(n)$ that we will consider: T is the torus and the set of invertible diagonal matrices, B is the Borel subgroup and is the set of invertible upper triangular matrices. We have the following relation among these subgroups: $T \subseteq B \subseteq P \subseteq G L(n)$. We will also only consider Weyl groups of type A so $W=S_{n}$.

2. Exercises

Exercise 1. We shall show that $X^{T}=\left\{w \cdot E_{m} \mid w \in S_{n}\right\}$.
It is easy to see that $w \cdot E_{m} \in X^{T}$. Now to show the other direction, consider $t \in T$ and write t as

$$
\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & 0 \\
0 & 0 & \lambda_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

Let $M \in X$ and write M as $\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ where v_{i} is a $n \times 1$ vector. Then in order for M to be in X, we must have that the span of the first m_{1} vectors after multiplying by scalars from t must be the same as $E_{m_{1}}$ so it follows that there can only be m_{1} nonzero rows among these first m_{1} vectors because we allow t to vary. Thus using column operations, we can get that these m_{1} vectors only have m_{1} nonzero entries combined and each is in a different row. We continue this process for $E_{m_{2}}$ all the way to $E_{m_{k}}$ and \mathbb{C}^{n} from which we can see that M has the form $w . E_{m}$ for some $w \in S_{n}$.

Normalizer. Define $N_{G}(T)=\left\{g \in G L(n) \mid g T g^{-1}=T\right\}$. One can show that $N_{G}(T)=\{$ all permutations matrices with arbitrary nonzero numbers in the 1's places $\}=S_{n} T$. We now show some relations between $N_{G}(T)$ and W.

[^0]Exercise 2. $W=S_{n}=N_{G}(T) / T$ and $W_{P}=S_{n} \cap P=N_{P}(T) / T$ and furthermore $W_{P} \leqslant W$.
First proof that $N_{G}(T)=S_{n} T$. Let $M \in N_{G}(T)$ and let T^{\prime} be a diagonal matrix such that $T_{i i}=i$, then $M T^{\prime} M^{-1}=T^{*}$ is also a diagonal matrix. Since conjugation preserves spectrum, it must be that $T_{i i}^{*}=\sigma(i)$ for some permutation σ. Since $M T^{\prime}=T^{*} M, S_{i j} j=\sigma(i) S_{i j}, S_{i j}(j-\sigma(i))=0$. So $S_{i} j=0$ for all $\sigma(i) \neq j$. Each row has only one non-zero entry. So M must be of the form $S_{n} T$.

Now since $N_{G}(T)=S_{n} T$, the homomorphism $\phi N_{G}(T) \rightarrow W$ where $\phi(M)=w$ with $M=w T^{\prime}$ for some permutation w and diagonal matrix $T^{\prime} . w$ is the identity permutation if and only if $M \in T$. So the kernel of ϕ is T. Therefore $N_{G}(T) / T \cong W$. Therefore we have our desired isomorphism and a similar argument works for W_{P}.

Note that W_{P} is made up of the permutations in S_{n} that fit the shape of P. It is clear from the definition of P that the identity element is in W_{P}. If you consider the transpositions that generate all the possible permutations in one specific block of P, then it is easy to see that $W_{P} \leqslant W$ since these transpositions generate W_{P}.

Exercise 3. We will show that for $w \in W$ there exists a unique permutation $u \in w W_{P}$ of minimal length where length of $u=l(u)=\#\{(i<j) \mid u(i)>u(j)\}$.

We provide the following algorithm for constructing u. Start with w and multiply w by $s \in W_{P}$ only if $l(w s)<l(w)$. Do this for all elements $s \in W_{P}$ so that at the end, we have $u=w s_{a_{1}} s_{a_{2}} \cdots s_{a_{k}}$. The claim is that this u is of minimal length. For sake of contradiction, suppose we have $v \in W_{P}$ such that $l(v)<l(u)$. Then this means that there exists $s \in W_{P}$ such that $v s=u$ so $v=u s^{-1}$. Therefore $l\left(u s^{-1}\right)<l(u)$, however this is not possible by construction of $u . u$ is also unique. Suppose u_{1} and u_{2} both have minimal length. Then $u_{1}=u_{2} w_{2}$ and $u_{2}=u_{1} w_{1}$ for $w_{1}, w_{2} \in W_{P}$. Hence $l\left(u_{1}\right) \leq l\left(u_{1} w_{1}\right)=l\left(u_{2}\right)$ and $l\left(u_{2}\right) \leq l\left(u_{2} w_{2}\right)=l\left(u_{1}\right)$, by definition of u_{1} and u_{2} being elements of minimal length in $w W_{P}$. We also have $l\left(u_{1}\right)=l\left(u_{2}\right)$ so it follows that $w_{1}=w_{2}=e$ and therefore, $u_{1}=u_{2}$.

Grassmannian. Let $X=G r(m, n)$. We will view this Grassmannian as a partial flag variety. P consists of invertible block upper triangular matrices with two blocks. The block in the top left has size m and the block in the bottom right has size $n-m$. We now describe W_{P} in terms of its generators. The generators are $\{(1 i) \mid 2 \leq i \leq m\} \cup\{((m+1) j) \mid m+2 \leq j \leq n\}$. Let $W^{P} \subseteq W$ be the set of all such u described in exercise 3. In X, W^{P} is the set of all permutations that send $(12 \ldots m)$ to m numbers that are ordered from lowest to highest so there are $\binom{n}{m}$ elements in W^{P}. Therefore we can discuss a bijection between young diagrams and W^{P}. Note that we already have a bijection between young diagrams and X^{T} since X^{T} corresponds to Schubert symbols, which are used to construct a young diagram.

Exercise 4. We shall find a bijection between X^{T} and W^{P} and between young diagrams and X^{T}.
We will show a bijection between W / W_{P} and X^{T} since W / W_{P} is essentially equivalent to W^{P}. Let $w \cdot E_{m} \in X^{T}$ be a arbitrary element. We prove that $\phi\left(w \cdot E_{m}\right)=w W_{p}$ is a bijection. By exercise three, we know there exists a unique minimal length u for $w W_{p}$. since $u W_{p}=w W_{p}, w=u v$ for some $v \in W_{p}$. Now by definition of stabilizer $v . E m=E m$ for all $v \in W_{p}$. So $\phi\left(w \cdot E_{m}\right)=\phi\left(u v \cdot E_{m}\right)=\phi\left(u \cdot E_{m}\right)=u W_{p}$. Since such a u exist and is unique. ϕ is a bijection. A bijection with young diagrams follows through bijection between young diagrams and X^{T}.

Note that by this bijection, $l(u)=|\lambda|$. Cool! In fact, we can say more about the connection between u and λ. For $1 \leq i \leq m$, the number of boxes in row i corresponds with the number of inversions with i, i.e. the number of boxes $=\#\{j \mid j>i$ and $u(i)>u(j)\}$. Therefore, u will completely determine λ.

[^0]: Date: July 13, 2016.

