YOUNG DIAGRAMS AND PARTIAL FLAG VARIETIES

CHI-NUO LEE AND ARTHUR WANG

1. INTRODUCTION

Consider {e1,ea, -+ ,e,}, a fixed ordered basis of C™. Recall that the standard flag of C™ is defined
by E1 C E; C --- C E,, where Ej, = span{ej,ea,- - ,er}. We now introduce partial flag varieties. Let
m = (my,ma - ,myg), where 0 < my < mg < --- <my <n. Let X = Fl(m,n), a partial flag variety, then
X ={(Vin, CVip, C-+- C Vpp, CC™) | dim(Vyp,) = my}. Let B,y = (B, C By, C -+ C Epy,) € X and
let P denote the stabilizer of E,,, i.e. {g € GL(n) | g.E = Enn}. Let mg = 0 and my41 = n, then P is the
group of invertible block upper triangular matrices, where the dimension of the i*" block is m;; — m;. The
following are other key subgroups of GL(n) that we will consider: T is the torus and the set of invertible
diagonal matrices, B is the Borel subgroup and is the set of invertible upper triangular matrices. We have
the following relation among these subgroups: T C B C P C GL(n). We will also only consider Weyl groups
of type Aso W = 5,,.

2. EXERCISES

Exercise 1. We shall show that X7 = {w.E,, | w € S,,}.

It is easy to see that w.FE,, € XT. Now to show the other direction, consider ¢t € T' and write ¢ as

A 0 O 0
0 X O 0
0 0 A3 0
0O 0 O An
Let M € X and write M as [vl Vg ... vn} where v; is a n x 1 vector. Then in order for M to be in

X, we must have that the span of the first m, vectors after multiplying by scalars from ¢ must be the same
as E,,, so it follows that there can only be m nonzero rows among these first m, vectors because we allow
t to vary. Thus using column operations, we can get that these m; vectors only have m; nonzero entries
combined and each is in a different row. We continue this process for E,,, all the way to E,,, and C" from
which we can see that M has the form w.F,, for some w € S,.

k

Normalizer. Define Ng(T) = {g € GL(n) | gTg~* = T'}. One can show that Ng(T) = {all permutations
matrices with arbitrary nonzero numbers in the 1’s places} = S, T. We now show some relations between
Ng(T) and W.
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Exercise 2. W = S,, = Ng(T)/T and Wp = S, N P = Np(T')/T and furthermore Wp < W.

First proof thatNg(T) = S,T. Let M € Ng(T) and let T’ be a diagonal matrix such that T;; = ¢, then
MT'M~! = T* is also a diagonal matrix. Since conjugation preserves spectrum, it must be that T} = o(4)
for some permutation o. Since MT' = T*M, S;;7 = 0(i)Si;,Si;(j —o(i)) = 0. So S;5 = 0 for all o(i) # j.
Each row has only one non-zero entry. So M must be of the form S, T.

Now since Ng(T') = S,T', the homomorphism ¢Ng(T') — W where ¢(M) = w with M = wT” for some
permutation w and diagonal matrix T”. w is the identity permutation if and only if M € T. So the kernel of
¢ is T. Therefore Ng(T')/T = W. Therefore we have our desired isomorphism and a similar argument works
for Wp.

Note that Wp is made up of the permutations in S, that fit the shape of P. It is clear from the definition
of P that the identity element is in Wp. If you consider the transpositions that generate all the possible
permutations in one specific block of P, then it is easy to see that Wp < W since these transpositions
generate Wp.

Exercise 3. We will show that for w € W there exists a unique permutation u € wWp of minimal length
where length of v = I(u) = #{(i < j) | u(é) > u(y)}.

We provide the following algorithm for constructing u. Start with w and multiply w by s € Wp only if
l(ws) < l(w). Do this for all elements s € Wp so that at the end, we have u = WS4, Sq, * - * Sa,- The claim is
that this u is of minimal length. For sake of contradiction, suppose we have v € Wp such that I(v) < I(u).
Then this means that there exists s € Wp such that vs = u so v = us~'. Therefore I(us™') < I(u), however
this is not possible by construction of w. w is also unique. Suppose u; and uy both have minimal length. Then
w1 = ugwy and ug = uyw; for wy,we € Wp. Hence I(u1) < l(ujwy) = l(uz) and I(uz) < l(ugwy) = I(u1), by
definition of u; and ug being elements of minimal length in wWp. We also have [(u1) = I(uz) so it follows
that wy = wg = e and therefore, uy = us.

Grassmannian. Let X = Gr(m,n). We will view this Grassmannian as a partial flag variety. P consists
of invertible block upper triangular matrices with two blocks. The block in the top left has size m and the
block in the bottom right has size n —m. We now describe Wp in terms of its generators. The generators are
{(1i) |2 <i<m}PU{((m+1)j) | m+2<j<n} Let WF C W be the set of all such u described in exercise
3. In X, W7 is the set of all permutations that send (12...m) to m numbers that are ordered from lowest
to highest so there are (;) elements in W, Therefore we can discuss a bijection between young diagrams

and WP, Note that we already have a bijection between young diagrams and X7 since X corresponds to
Schubert symbols, which are used to construct a young diagram.

Exercise 4. We shall find a bijection between X7 and W’ and between young diagrams and X7

We will show a bijection between W/Wp and X7T since W/Wp is essentially equivalent to W¥. Let
w.E,, € XT be a arbitrary element. We prove that ¢(w.E,,) = wW, is a bijection. By exercise three, we
know there exists a unique minimal length u for wW,,. since uW, = wW,,, w = uv for some v € W,,. Now
by definition of stabilizer v.Em = Em for all v € W,. So ¢(w.E,,) = ¢(uv.Ey,) == ¢(u.Ey,) = ulW,. Since
such a u exist and is unique. ¢ is a bijection. A bijection with young diagrams follows through bijection
between young diagrams and X7,

Note that by this bijection, I(u) = |A|. Cool! In fact, we can say more about the connection between u
and A. For 1 <14 < m, the number of boxes in row ¢ corresponds with the number of inversions with i, i.e.
the number of boxes = #{j | j > i and w(i) > u(j)}. Therefore, u will completely determine A.
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