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1. Introduction

Consider {e1, e2, · · · , en}, a fixed ordered basis of Cn. Recall that the standard flag of Cn is defined
by E1 ⊂ E2 ⊂ · · · ⊂ En, where Ek = span{e1, e2, · · · , ek}. We now introduce partial flag varieties. Let
m = (m1,m2 · · · ,mk), where 0 < m1 ≤ m2 ≤ · · · ≤ mk < n. Let X = Fl(m,n), a partial flag variety, then
X = {(Vm1 ⊂ Vm2 ⊂ · · · ⊂ Vmk

⊆ Cn) | dim(Vmi) = mi}. Let Em = (Em1 ⊂ Em2 ⊂ · · · ⊂ Emk
) ∈ X and

let P denote the stabilizer of Em, i.e. {g ∈ GL(n) | g.Em = Em}. Let m0 = 0 and mk+1 = n, then P is the
group of invertible block upper triangular matrices, where the dimension of the ith block is mi+1 −mi. The
following are other key subgroups of GL(n) that we will consider: T is the torus and the set of invertible
diagonal matrices, B is the Borel subgroup and is the set of invertible upper triangular matrices. We have
the following relation among these subgroups: T ⊆ B ⊆ P ⊆ GL(n). We will also only consider Weyl groups
of type A so W = Sn.

2. Exercises

Exercise 1. We shall show that XT = {w.Em | w ∈ Sn}.

It is easy to see that w.Em ∈ XT . Now to show the other direction, consider t ∈ T and write t as
λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn



Let M ∈ X and write M as
[
v1 v2 . . . vn

]
where vi is a n × 1 vector. Then in order for M to be in

X, we must have that the span of the first m1 vectors after multiplying by scalars from t must be the same
as Em1

so it follows that there can only be m1 nonzero rows among these first m1 vectors because we allow
t to vary. Thus using column operations, we can get that these m1 vectors only have m1 nonzero entries
combined and each is in a different row. We continue this process for Em2

all the way to Emk
and Cn from

which we can see that M has the form w.Em for some w ∈ Sn.

Normalizer. Define NG(T ) = {g ∈ GL(n) | gTg−1 = T}. One can show that NG(T ) = {all permutations
matrices with arbitrary nonzero numbers in the 1’s places} = SnT . We now show some relations between
NG(T ) and W .
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Exercise 2. W = Sn = NG(T )/T and WP = Sn ∩ P = NP (T )/T and furthermore WP 6W .

First proof thatNG(T ) = SnT . Let M ∈ NG(T ) and let T ′ be a diagonal matrix such that Tii = i, then
MT ′M−1 = T ∗ is also a diagonal matrix. Since conjugation preserves spectrum, it must be that T ∗ii = σ(i)
for some permutation σ. Since MT ′ = T ∗M , Sijj = σ(i)Sij , Sij(j − σ(i)) = 0. So Sij = 0 for all σ(i) 6= j.
Each row has only one non-zero entry. So M must be of the form SnT .

Now since NG(T ) = SnT , the homomorphism φNG(T ) → W where φ(M) = w with M = wT ′ for some
permutation w and diagonal matrix T ′. w is the identity permutation if and only if M ∈ T . So the kernel of
φ is T. Therefore NG(T )/T ∼= W . Therefore we have our desired isomorphism and a similar argument works
for WP .

Note that WP is made up of the permutations in Sn that fit the shape of P . It is clear from the definition
of P that the identity element is in WP . If you consider the transpositions that generate all the possible
permutations in one specific block of P , then it is easy to see that WP 6 W since these transpositions
generate WP .

Exercise 3. We will show that for w ∈ W there exists a unique permutation u ∈ wWP of minimal length
where length of u = l(u) = #{(i < j) | u(i) > u(j)}.

We provide the following algorithm for constructing u. Start with w and multiply w by s ∈ WP only if
l(ws) < l(w). Do this for all elements s ∈ WP so that at the end, we have u = wsa1sa2 · · · sak

. The claim is
that this u is of minimal length. For sake of contradiction, suppose we have v ∈ WP such that l(v) < l(u).
Then this means that there exists s ∈WP such that vs = u so v = us−1. Therefore l(us−1) < l(u), however
this is not possible by construction of u. u is also unique. Suppose u1 and u2 both have minimal length. Then
u1 = u2w2 and u2 = u1w1 for w1,w2 ∈ WP . Hence l(u1) ≤ l(u1w1) = l(u2) and l(u2) ≤ l(u2w2) = l(u1), by
definition of u1 and u2 being elements of minimal length in wWP . We also have l(u1) = l(u2) so it follows
that w1 = w2 = e and therefore, u1 = u2.

Grassmannian. Let X = Gr(m,n). We will view this Grassmannian as a partial flag variety. P consists
of invertible block upper triangular matrices with two blocks. The block in the top left has size m and the
block in the bottom right has size n−m. We now describe WP in terms of its generators. The generators are
{(1i) | 2 ≤ i ≤ m}∪{((m+ 1)j) | m+ 2 ≤ j ≤ n}. Let WP ⊆W be the set of all such u described in exercise
3. In X, WP is the set of all permutations that send (12 . . .m) to m numbers that are ordered from lowest
to highest so there are

(
n
m

)
elements in WP . Therefore we can discuss a bijection between young diagrams

and WP . Note that we already have a bijection between young diagrams and XT since XT corresponds to
Schubert symbols, which are used to construct a young diagram.

Exercise 4. We shall find a bijection between XT and WP and between young diagrams and XT .

We will show a bijection between W/WP and XT since W/WP is essentially equivalent to WP . Let
w.Em ∈ XT be a arbitrary element. We prove that φ(w.Em) = wWp is a bijection. By exercise three, we
know there exists a unique minimal length u for wWp. since uWp = wWp, w = uv for some v ∈ Wp. Now
by definition of stabilizer v.Em = Em for all v ∈ Wp. So φ(w.Em) = φ(uv.Em) == φ(u.Em) = uWp. Since
such a u exist and is unique. φ is a bijection. A bijection with young diagrams follows through bijection
between young diagrams and XT .

Note that by this bijection, l(u) = |λ|. Cool! In fact, we can say more about the connection between u
and λ. For 1 ≤ i ≤ m, the number of boxes in row i corresponds with the number of inversions with i, i.e.
the number of boxes = #{j | j > i and u(i) > u(j)}. Therefore, u will completely determine λ.
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