SCHUBERT VARIETIES AND CURVE NEIGHBORHOODS

CHI-NUO LEE AND ARTHUR WANG

1. Introduction

We start by defining key terms. Let $X=G r(m, n)$ denote a fixed Grassmannian. Consider $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$, a fixed ordered basis of \mathbb{C}^{n}. The standard flag of \mathbb{C}^{n} is defined by $E_{1} \subset E_{2} \subset \cdots \subset E_{n}$, where $E_{k}=$ $\operatorname{span}\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}$. Let X_{I} be the associated Schubert Variety for some Schubert symbol I. It has been shown that $X_{I}=\left\{V \in X \mid \operatorname{dim}\left(V \cap E_{k}\right) \geq \#(I \cap[1, k]\}\right.$. Let Ω be a closed subset of $X . \Gamma_{d}(\Omega)$ is the curve neighborhood of Ω, which is defined to be the union of all curves of degree d that intersect Ω.

2. Exercises

Exercise 1. We shall show that $\Gamma_{1}\left(E_{m}\right)=X_{I}$, where $I=\{2,3, \cdots, m, n\}$.

Suppose $V \in \Gamma_{1}\left(E_{m}\right)$. Then this means that there exists a line L in X such that V and E_{m} are both contained in line L. Recall that a line in the Grassmannian is defined by two subspaces of \mathbb{C}^{n}, A and B, where $\operatorname{dim} A=m-1$ and $\operatorname{dim} B=m+1$, i.e. $L=\{V \in X \mid A \subseteq V \subset B\}$. Therefore we have the following set of relations: $A \subseteq V \subset B$ and $A \subseteq E_{m} \subset B$. This implies that

$$
\begin{equation*}
\operatorname{dim}\left(V \cap E_{m}\right) \geq m-1 \tag{1}
\end{equation*}
$$

It can be shown that (11) further implies that for $1 \leq k \leq m-1$, $\operatorname{dim}\left(V \cap E_{k}\right) \geq k-1$. Note that it is always true that $\operatorname{dim}\left(V \cap E_{n}\right)=m$, so using (1), we have that for $m+1 \leq k \leq n, \operatorname{dim}\left(V \cap E_{k}\right) \geq m-1$. Hence, if we put all these inequalities together, we have that $V \in X_{I}$, where $I=\{2,3, \cdots, m, n\}$. Now suppose $V \in X_{I}$, then we must certainly have that $\operatorname{dim}\left(V \cap E_{m}\right) \geq m-1$. This is the same as saying there exists an m-1-dimensional subspace A and and $m+1$-dimensional subspace B such that $A \subseteq V \subset B$ and $A \subseteq E_{m} \subset B$, which means that there is a line $L \in X$ such that L connects V and E_{m}, so $V \in \Gamma_{1}\left(E_{m}\right)$.

Exercise 2. Let $S \subseteq G r(m, n)$, proof that $\Gamma_{d}(S)=\Gamma_{1}\left(\Gamma_{d-1}(S)\right)$.
$\Gamma_{d}(S) \subseteq \Gamma_{1}\left(\Gamma_{d-1}(S)\right):$
Let $V \in S$ and $U \in \Gamma_{d}(S)$. By previous exercises we know that there's a chain of d intersecting lines that go from V to U. Let A be the intersection point that is colinear with U, then a chain of $d-1$ lines go from V to A, so $A \in \Gamma_{d-1}(S)$. Since there is a line from A to $U, U \in \Gamma_{1}(A)$. Since $A \subseteq \Gamma_{d-1}(S)$, $\Gamma_{1}(A) \subseteq \Gamma_{1}\left(\Gamma_{d-1}(S)\right)$, we have $U \in \Gamma_{1}\left(\Gamma_{d-1}(S)\right)$.
$\Gamma_{1}\left(\Gamma_{d-1}(S)\right) \subseteq \Gamma_{d}(S):$
Let $V \in S$ and $U \in \Gamma_{1}\left(\Gamma_{d-1}(S)\right)$. Since $U \in \Gamma_{1}\left(\Gamma_{d-1}(S)\right)$, there must be some $A \in \Gamma_{d-1}(S)$ that V is colinear to. Since $A \in \Gamma_{d-1}(S)$, there's a chain of $d-1$ intersecting lines that go from V to A. By appending the line from a to U to the path, we have a chain of d intersecting lines that go from V to U, so $U \in \Gamma_{d}(S)$.

Date: June 22, 2016.

Exercise 3. (The previous exercises have already shown that $X_{I}=Z_{I}$.) Proof that $\Gamma_{d}\left(X_{I}\right)=Z_{J}$, where $J \subseteq[1, n]$ is defined by taking I, and swapping the d smallest elements in I with the d largest elements in $[1, n]-I$.

First show that this holds for $d=1$.
$\Gamma_{d}\left(X_{I}\right) \subseteq Z_{J}:$
Let $V \in Z_{I}$, so $\operatorname{dim}\left(V \cap E_{k}\right) \geq \#(I \cap[1, k])$ for all k. Let $U \in \Gamma_{1}\left(Z_{I}\right)$, then there exists some line through V and U. So $\operatorname{dist}(V, U)=1$, by previous exercise we have $\operatorname{dim}(V+U)=m+1$ thus $\operatorname{dim}(V \cap U)=m-1$. Let $A=V \cap U$, then V, U can be expressed as $V=A+V^{\prime}, U=A+U^{\prime}$ where V^{\prime}, U^{\prime} has dimension 1 . Let i be the smallest element of I and j the largest element of $[1, n]-I$. By construction of J , we see that for all k,

$$
\#(J \cap[1, k])=\left\{\begin{array}{l}
0 \text { for } k<i \\
\#(I \cap[1, k])-1 \text { for } i \leq k<j \\
\#(I \cap[1, k]) \text { for } j<k \leq n
\end{array}\right.
$$

For $k<i$, $\operatorname{dim}\left(U \cap E_{k}\right) \geq 0$ is obvious.
For $i \leq k<j, \operatorname{dim}\left(E_{k} \cap U\right)=\operatorname{dim}\left(E_{k} \cap\left(A+U^{\prime}\right)\right) \geq \operatorname{dim}\left(E_{k} \cap A\right) \geq \operatorname{dim}\left(E_{k} \cap\left(A+V^{\prime}\right)\right)-1=$ $\operatorname{dim}\left(E_{k} \cap V\right)-1 \geq \#(I \cap[1, k])-1=\#(J \cap[1, k])$. We know $\operatorname{dim}\left(E_{k} \cap A\right) \geq \operatorname{dim}\left(E_{k} \cap\left(A+V^{\prime}\right)\right)-1$ since V^{\prime} has dimension 1 , contributing at most 1 to the total dimension.

For $j<k \leq n$, assume $\operatorname{dim}\left(E_{k} \cap U\right)<\#(I \cap[1, k])$, since j is the largest element not in $[1, n]-I$ for all positive integer c where $k+c<n, \#(I \cap[1, k+c])=\#(I \cap[1, k])+c$. Now let $k+c=n$. $\operatorname{dim}\left(E_{n} \cap U\right)=\operatorname{dim}\left(E_{k+c} \cap U\right) \leq \operatorname{dim}\left(E_{k} \cap U\right)+c<\#(I \cap[1, k])+c=\#(I \cap[1, k+c])=\#(I \cap[1, n])=m$. We have $\operatorname{dim}\left(E_{n} \cap U\right)<m$, a contradiction. So $\operatorname{dim}\left(E_{k} \cap U\right) \geq \#(I \cap[1, k])$.

We see that $\operatorname{dim}\left(E_{k} \cap U\right) \geq \#(J \cap[1, k])$ for all cases of k, so $U \in Z_{J}$. Thus $\Gamma_{d}\left(X_{I}\right) \subseteq Z_{J}$.
$Z_{J} \subseteq \Gamma_{d}\left(X_{I}\right):$
Let $U \subseteq Z_{J}$. For the non-trivial case assume $U \notin X_{I}$. Take the reduced column echelon form of the matrix that spans U as the basis B_{U} for U. Since it is in RCEF form, for m of the standard basis e_{q}, there is exactly one basis vector of the form $e_{q}+c_{r} e_{r}+c_{s} e_{s} \ldots$, where q is the largest index in the linear combination, which shall be denoted as u_{q}. Let i be the smallest element of I and j the largest element of $[1, n]-I$. Let j be the $t^{\text {th }}$ largest element in J. Let q be the $t^{\text {th }}$ largest index of all the basis vector indexes in B_{U}. Notice for U to be in Z_{J} we have $q \leq j$. Replace u_{q} with the smallest standard basis that is linearly independent from $B_{U}-u_{q}$. We call the span of this new basis U^{\prime}.

For $k<i, \operatorname{dim}\left(U^{\prime} \cap E_{k}\right) \geq 0$ is obvious.
For $i \leq k<j$, if $q<i$ then $\operatorname{dim}\left(U^{\prime} \cap E_{k}\right) \geq \#(J \cap[1, k])+1=\#(I \cap[1, k])$. If $q \geq i$ then the same is true since there must be some vector taking up the spaces less then i.

For $j<k \leq n, \operatorname{dim}\left(U^{\prime} \cap E_{k}\right) \geq \#(J \cap[1, k])=\#(I \cap[1, k])$.
We see that $U^{\prime} \in X_{I}$. But then we can define a line from U^{\prime} to U, setting $A=U \cap U^{\prime}$ and $B=U+U^{\prime}$, so $U \in \Gamma_{d}\left(X_{I}\right)$. $Z_{J} \subseteq \Gamma_{d}\left(X_{I}\right)$:

Since this holds for $d=1$, with exercise 2 , we can apply Γ recursively to get the general case for any d.

