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1. Introduction

We start by defining key terms. Let X = Gr(m,n) denote a fixed Grassmannian. Consider {e1, e2, · · · , en},
a fixed ordered basis of Cn. The standard flag of Cn is defined by E1 ⊂ E2 ⊂ · · · ⊂ En, where Ek =
span{e1, e2, · · · , ek}. Let XI be the associated Schubert Variety for some Schubert symbol I. It has been
shown that XI = {V ∈ X | dim(V ∩ Ek) ≥ #(I ∩ [1, k]}. Let Ω be a closed subset of X. Γd(Ω) is the curve
neighborhood of Ω, which is defined to be the union of all curves of degree d that intersect Ω.

2. Exercises

Exercise 1. We shall show that Γ1(Em) = XI , where I = {2, 3, · · · ,m, n}.

Suppose V ∈ Γ1(Em). Then this means that there exists a line L in X such that V and Em are both
contained in line L. Recall that a line in the Grassmannian is defined by two subspaces of Cn, A and B,
where dimA = m− 1 and dimB = m + 1, i.e. L = {V ∈ X | A ⊆ V ⊂ B}. Therefore we have the following
set of relations: A ⊆ V ⊂ B and A ⊆ Em ⊂ B. This implies that

(1) dim(V ∩ Em) ≥ m− 1.

It can be shown that (1) further implies that for 1 ≤ k ≤ m − 1, dim(V ∩ Ek) ≥ k − 1. Note that it is
always true that dim(V ∩ En) = m, so using (1), we have that for m + 1 ≤ k ≤ n, dim(V ∩ Ek) ≥ m − 1.
Hence, if we put all these inequalities together, we have that V ∈ XI , where I = {2, 3, · · · ,m, n}. Now
suppose V ∈ XI , then we must certainly have that dim(V ∩ Em) ≥ m− 1. This is the same as saying there
exists an m− 1-dimensional subspace A and and m + 1-dimensional subspace B such that A ⊆ V ⊂ B and
A ⊆ Em ⊂ B, which means that there is a line L ∈ X such that L connects V and Em, so V ∈ Γ1(Em).

Exercise 2. Let S ⊆ Gr(m,n), proof that Γd(S) = Γ1(Γd−1(S)).

Γd(S) ⊆ Γ1(Γd−1(S)):
Let V ∈ S and U ∈ Γd(S). By previous exercises we know that there’s a chain of d intersecting lines

that go from V to U . Let A be the intersection point that is colinear with U , then a chain of d − 1 lines
go from V to A, so A ∈ Γd−1(S). Since there is a line from A to U , U ∈ Γ1(A). Since A ⊆ Γd−1(S),
Γ1(A) ⊆ Γ1(Γd−1(S)), we have U ∈ Γ1(Γd−1(S)).

Γ1(Γd−1(S)) ⊆ Γd(S):
Let V ∈ S and U ∈ Γ1(Γd−1(S)). Since U ∈ Γ1(Γd−1(S)), there must be some A ∈ Γd−1(S) that V is

colinear to. Since A ∈ Γd−1(S), there’s a chain of d−1 intersecting lines that go from V to A. By appending
the line from a to U to the path, we have a chain of d intersecting lines that go from V to U , so U ∈ Γd(S).
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Exercise 3. (The previous exercises have already shown that XI = ZI .) Proof that Γd(XI) = ZJ , where
J ⊆ [1, n] is defined by taking I, and swapping the d smallest elements in I with the d largest elements in
[1, n]− I.

First show that this holds for d = 1.

Γd(XI) ⊆ ZJ :
Let V ∈ ZI , so dim(V ∩Ek) ≥ #(I ∩ [1, k]) for all k. Let U ∈ Γ1(ZI), then there exists some line through

V and U . So dist(V,U) = 1, by previous exercise we have dim(V + U) = m + 1 thus dim(V ∩ U) = m− 1.
Let A = V ∩U , then V,U can be expressed as V = A + V ′, U = A + U ′ where V ′, U ′ has dimension 1. Let i
be the smallest element of I and j the largest element of [1, n]− I. By construction of J, we see that for all
k,

#(J ∩ [1, k]) =

 0 for k < i
#(I ∩ [1, k])− 1 for i ≤ k < j
#(I ∩ [1, k]) for j < k ≤ n

For k < i, dim(U ∩ Ek) ≥ 0 is obvious.
For i ≤ k < j, dim(Ek ∩ U) = dim(Ek ∩ (A + U ′)) ≥ dim(Ek ∩ A) ≥ dim(Ek ∩ (A + V ′)) − 1 =

dim(Ek ∩ V )− 1 ≥ #(I ∩ [1, k])− 1 = #(J ∩ [1, k]). We know dim(Ek ∩A) ≥ dim(Ek ∩ (A + V ′))− 1 since
V ′ has dimension 1, contributing at most 1 to the total dimension.

For j < k ≤ n, assume dim(Ek ∩ U) < #(I ∩ [1, k]), since j is the largest element not in [1, n] − I
for all positive integer c where k + c < n, #(I ∩ [1, k + c]) = #(I ∩ [1, k]) + c. Now let k + c = n.
dim(En ∩U) = dim(Ek+c ∩U) ≤ dim(Ek ∩U) + c < #(I ∩ [1, k]) + c = #(I ∩ [1, k + c]) = #(I ∩ [1, n]) = m.
We have dim(En ∩ U) < m, a contradiction. So dim(Ek ∩ U) ≥ #(I ∩ [1, k]).

We see that dim(Ek ∩ U) ≥ #(J ∩ [1, k]) for all cases of k, so U ∈ ZJ . Thus Γd(XI) ⊆ ZJ .

ZJ ⊆ Γd(XI):
Let U ⊆ ZJ . For the non-trivial case assume U /∈ XI . Take the reduced column echelon form of the

matrix that spans U as the basis BU for U . Since it is in RCEF form, for m of the standard basis eq, there is
exactly one basis vector of the form eq + crer + cses..., where q is the largest index in the linear combination,
which shall be denoted as uq. Let i be the smallest element of I and j the largest element of [1, n]− I. Let
j be the tth largest element in J . Let q be the tth largest index of all the basis vector indexes in BU . Notice
for U to be in ZJ we have q ≤ j. Replace uq with the smallest standard basis that is linearly independent
from BU − uq. We call the span of this new basis U ′.

For k < i, dim(U ′ ∩ Ek) ≥ 0 is obvious.
For i ≤ k < j, if q < i then dim(U ′ ∩Ek) ≥ #(J ∩ [1, k]) + 1 = #(I ∩ [1, k]). If q ≥ i then the same is true

since there must be some vector taking up the spaces less then i.
For j < k ≤ n, dim(U ′ ∩ Ek) ≥ #(J ∩ [1, k]) = #(I ∩ [1, k]).
We see that U ′ ∈ XI . But then we can define a line from U ′ to U , setting A = U ∩ U ′ and B = U + U ′,

so U ∈ Γd(XI). ZJ ⊆ Γd(XI):
Since this holds for d = 1, with exercise 2, we can apply Γ recursively to get the general case for any d.
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