Schubert Calculus
 Curve Neighborhoods of a Point

Arthur Wang Chi-Nuo Lee

Department of Mathematics
Rutgers University

DIMACS REU, 2016

Outline

(1) Geometry

- Euclidean and Projective
- Grassmannian
(2) Curve Neighborhoods
- Schubert Varieties
- Young Diagrams and Weyl Group
(3) Flag Varieties
- Full Flags and Partial Flags

4 Conjecture

Geometry

Euclidean and Projective

- Euclidean geometry is the traditional geometry learned in high school that is characterized by the parallel postulate.
- Projective geometry is different from Euclidean geometry in that we allow parallel lines to intersect.
- Think of standing in the middle of train tracks and looking into the horizon.
- Let V be a vector space. Then the projective space $P(V)$ of V is the set of 1-dimensional subspaces of V.
- \mathbb{P}^{n} is the set of all lines through the origin in \mathbb{C}^{n+1}.

Geometry

Grassmannian

- $X=\operatorname{Gr}(m, n)$ is the set of m-dimensional subspaces in a vector space V of dimension n.
- Fix a basis of $\mathbb{C}^{n}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. If $I=\{1,2, \ldots, m\}$, then $V_{I}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is a point in X.
- Actions on the Grassmannian
- $G=G L(n, \mathbb{C})$ is the set of all invertible matrices.
- B is the set of invertible upper triangular matrices.
- T is the set of invertible diagonal matrices.
- Note $T \subset B \subset G$

Curve Neighborhoods

Schubert Varieties

- For some index I, a Schubert Cell is the B orbit of some V_{l}.
- A Schubert Variety is the closure of a Schubert Cell.
- Schubert cells and Schubert Varieties are uniquely identified by their index I.

Curve Neighborhoods

Schubert Varieties

- Let $X=\operatorname{Gr}(m, n)$ and Ω be a closed subset of X. Then the degree d curve neighborhood of Ω, written $\Gamma_{d}(\Omega)$, is the closure of the union of all curves of degree d that meet Ω at a point.

Theorem

The curve neighborhood of a Schubert Variety is another Schubert Variety.

Curve Neighborhoods

Young Diagrams and Weyl Group

- We can keep track of Schubert Varieties by Young Diagrams and elements of the Weyl Group.
- Take a grid that is $m \times n-m$, then an index $/$ corresponds to a Young diagram λ by the following rule: if $i \in I$, then the $i^{\text {th }}$ step of your path is up, otherwise you step to the right.
- Given a Weyl group element w, w acts on the numbers $1,2, \ldots, m$, so w corresponds to some index J. Also the number of inversions i determine the number of boxes at row i. Furthermore the the length of w is the length of λ.
- We can also obtain the Young diagram of a curve neighborhood by shifted the border of λ by d units.

Curve Neighborhoods

Young Diagrams and Weyl Group

Table: Schubert Varieties of $\operatorname{Gr}(2,4)$

Young Diagram	Index	Weyl Group (type A)
\varnothing	$\{1,2\}$	e
\square	$\{1,3\}$	(23)
\square	$\{1,4\}$	(243)
\square	$\{2,3\}$	(123)
\square	$\{2,4\}$	(1243)
\square	$\{3,4\}$	$(13)(24)$

Flag Varieties

Full Flags and Partial Flags

- The standard flag of \mathbb{C}^{n} is defined by $E_{1} \subset E_{2} \subset \cdots \subset E_{n}$, where $E_{k}=\operatorname{span}\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}$, which is an example of a full flag.
- Let $m=\left(m_{1}, m_{2} \cdots, m_{k}\right)$, where $0<m_{1} \leq m_{2} \leq \cdots \leq m_{k}<n$. Let $X=F I(m, n)$, a partial flag variety, then $X=\left\{\left(V_{m_{1}} \subset V_{m_{2}} \subset \cdots \subset V_{m_{k}} \subseteq \mathbb{C}^{n}\right) \mid \operatorname{dim}\left(V_{m_{i}}\right)=m_{i}\right\}$.
- Let $E_{m}=\left(E_{m_{1}} \subset E_{m_{2}} \subset \cdots \subset E_{m_{k}}\right) \in X$ and let P denote the stabilizer of E_{m}.
- Note $T \subseteq B \subseteq P \subseteq G L(n)$.

Conjecture

- It is useful to look at Schubert Varieties in terms of their Weyl group element since the Weyl group is related to root systems, and coroots (a dual of roots) correspond to a degree d.
- We can determine the curve neighborhoods of a point by looking at these Weyl group elements and their associated roots and coroots.
- There are special types of roots called P-cosmall determined by our group P that allow us to compute these curve neighborhoods.

Conjecture

Conjecture

Assume that R is simply laced and let $\alpha \in R^{+} \backslash R_{P}^{+}$. The α is P-cosmall if and only if $z_{\alpha}{ }^{\vee} W_{P}=s_{\alpha} W_{P}$.

Acknowledgements

- Advisor: Professor Anders Buch
- Graduate Student: Sjuvon Chung
- Rutgers Math Deptartment for funding and support
- DIMACS REU

References

- Cox, D. A., Little, J. B., \& O'Shea, D. (2007). Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. New York: Springer.
- Humphreys, J. E. (1972). Introduction to Lie algebras and representation theory. New York: Springer-Verlag.
- Anders S. Buch Leonardo C. Mihalcea.Curve Neighborhoods of Schubert Varieties url:http://arxiv.org/pdf/1303.6013v1.pdf

