Schubert Calculus Curve Neighborhoods of a Point

Arthur Wang Chi-Nuo Lee

Department of Mathematics Rutgers University

DIMACS REU, 2016

Arthur Wang, Chi-Nuo Lee (Rutgers)

Schubert Calculus

DIMACS REU, 2016 1 / 13

3

A B F A B F

< 67 ▶

Outline

Geometry

- Euclidean and Projective
- Grassmannian

2 Curve Neighborhoods

- Schubert Varieties
- Young Diagrams and Weyl Group

3 Flag Varieties

• Full Flags and Partial Flags

4 Conjecture

- Euclidean geometry is the traditional geometry learned in high school that is characterized by the parallel postulate.
- Projective geometry is different from Euclidean geometry in that we allow parallel lines to intersect.
 - Think of standing in the middle of train tracks and looking into the horizon.
 - ► Let V be a vector space. Then the projective space P(V) of V is the set of 1-dimensional subspaces of V.
 - \mathbb{P}^n is the set of all lines through the origin in \mathbb{C}^{n+1} .

- 4 同 6 4 日 6 4 日 6

- ► X = Gr(m, n) is the set of m-dimensional subspaces in a vector space V of dimension n.
- ▶ Fix a basis of $\mathbb{C}^n = \{e_1, e_2, ..., e_n\}$. If $I = \{1, 2, ..., m\}$, then $V_I = span\{e_1, e_2, ..., e_m\}$ is a point in X.
- Actions on the Grassmannian
 - ► G = GL(n, C) is the set of all invertible matrices.
 - B is the set of invertible upper triangular matrices.
 - T is the set of invertible diagonal matrices.
 - Note $T \subset B \subset G$

- 本間 と えき と えき とうき

- For some index I, a Schubert Cell is the B orbit of some V_I .
- ► A Schubert Variety is the closure of a Schubert Cell.
- Schubert cells and Schubert Varieties are uniquely identified by their index *I*.

Let X = Gr(m, n) and Ω be a closed subset of X. Then the degree d curve neighborhood of Ω, written Γ_d(Ω), is the closure of the union of all curves of degree d that meet Ω at a point.

Theorem

The curve neighborhood of a Schubert Variety is another Schubert Variety.

くほと くほと くほと

Young Diagrams and Weyl Group

- We can keep track of Schubert Varieties by Young Diagrams and elements of the Weyl Group.
- ► Take a grid that is m × n − m, then an index I corresponds to a Young diagram λ by the following rule: if i ∈ I, then the ith step of your path is up, otherwise you step to the right.
- Given a Weyl group element w, w acts on the numbers 1, 2, ..., m, so w corresponds to some index J. Also the number of inversions i determine the number of boxes at row i. Furthermore the the length of w is the length of λ.
- We can also obtain the Young diagram of a curve neighborhood by shifted the border of λ by d units.

イロト イポト イヨト イヨト 二日

Young Diagrams and Weyl Group

Table:	Schubert	Varieties	of	Gr(2,4)
--------	----------	-----------	----	-----	-----	---

Young Diagram	Index	Weyl Group (type A)
Ø	$\{1, 2\}$	е
	$\{1, 3\}$	(23)
	$\{1, 4\}$	(243)
H	$\{2, 3\}$	(123)
\square	$\{2, 4\}$	(1243)
	$\{3,4\}$	(13)(24)

3

<ロ> (日) (日) (日) (日) (日)

Flag Varieties Full Flags and Partial Flags

- ▶ The standard flag of \mathbb{C}^n is defined by $E_1 \subset E_2 \subset \cdots \subset E_n$, where $E_k = \text{span}\{e_1, e_2, \cdots, e_k\}$, which is an example of a full flag.
- ▶ Let $m = (m_1, m_2 \cdots, m_k)$, where $0 < m_1 \le m_2 \le \cdots \le m_k < n$. Let X = Fl(m, n), a partial flag variety, then $X = \{(V_{m_1} \subset V_{m_2} \subset \cdots \subset V_{m_k} \subseteq \mathbb{C}^n) \mid dim(V_{m_i}) = m_i\}.$
- ▶ Let $E_m = (E_{m_1} \subset E_{m_2} \subset \cdots \subset E_{m_k}) \in X$ and let *P* denote the stabilizer of E_m .
- Note $T \subseteq B \subseteq P \subseteq GL(n)$.

Conjecture

- It is useful to look at Schubert Varieties in terms of their Weyl group element since the Weyl group is related to root systems, and coroots (a dual of roots) correspond to a degree d.
- We can determine the curve neighborhoods of a point by looking at these Weyl group elements and their associated roots and coroots.
- There are special types of roots called *P*-cosmall determined by our group *P* that allow us to compute these curve neighborhoods.

E + 4 E +

Conjecture

Conjecture

Assume that R is simply laced and let $\alpha \in R^+ \setminus R_P^+$. The α is P-cosmall if and only if $z_{\alpha^{\vee}}^P W_P = s_{\alpha} W_P$.

3

→

Acknowledgements

- Advisor: Professor Anders Buch
- Graduate Student: Sjuvon Chung
- Rutgers Math Deptartment for funding and support
- DIMACS REU

3

References

- Cox, D. A., Little, J. B., & O'Shea, D. (2007). Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. New York: Springer.
- Humphreys, J. E. (1972). Introduction to Lie algebras and representation theory. New York: Springer-Verlag.
- Anders S. Buch Leonardo C. Mihalcea.Curve Neighborhoods of Schubert Varieties url:http://arxiv.org/pdf/1303.6013v1.pdf

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ