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Abstract

The complexity of the minimum circuit size problem (MCSP) — and its many variants — is linked
intricately to countless other questions in theoretical computer science. For instance, NP-hardness of
MCSP or the closely-related minimum Kolgomorov time-complexity problem (MKTP) is known to imply
ZPP 6= EXP, and even if such reductions exist, they cannot be nearly as simple as the standard NP-
completeness reductions for other problems [MW17]. In this project, we study whether various variants
of circuit minimization can be complete for NP, or smaller classes, under simple types of reductions.

We investigate these questions in three specific ways. Firstly, we study whether recent results [AGM20;
AGHR21] showing MKTP is hard for DET or even coNISZKL under non-uniform projections may be
replicated for MCSP. We build on techniques of [GII+19] and construct a non-uniform projection from
Majority to MCSP, modulo an unproven conjecture on the monotonicity of expected circuit complexity of
p-biased functions. Secondly, we consider AC0

d-MFSP, the problem of minimizing depth-d formula sizes.
We suggest (but do not fully prove) that the reduction of [Ila20b] can be modified to yield the NP-hardness
of AC0

d-MFSP under quasipolynomial-size uniform AC0 reductions which are randomized and adaptive.
We adapt the techniques of [Fu20] to show that (non-depth-bounded-)MFSP cannot be complete for NP
under quasipolynomial-size uniform AC0, deterministic and non-adaptive reductions, unless EXP 6= ZPP.
These (partial) results shed light on the power of randomness and adaptivity in reductions, at least in the
setting of quasipolynomial-size AC0 computation. Finally, we investigate the robustness of the definition
of the class NISZKL (as defined in [AGHR21]) and observe that NISZKL = NISZKAC0[⊕].

1 Introduction

In this REU project, we study the computational complexity of various circuit minimization problems. The
prototypical such problem, the minimum circuit size problem (MCSP), is defined as follows. The input is a
truth table of a Boolean function f : {0, 1}n → {0, 1}, as well as a size parameter θ, and MCSP(f, θ) = 1 iff
size(f) ≤ θ, where size(f) is simply the size of the smallest Boolean circuit computing f (over some fixed
basis of gates). MCSP has numerous variants, often resulting from changing the notion of size used in the
definition. In this report, we will mostly focus on MCSP, as well as the analogous formula minimization
problem MFSP, and its constant-depth variant AC0

d-MFSP.
How complex is circuit minimization? For simplicity, let us begin by focusing on MCSP. Note that if f

is an n-bit function, then MCSP’s input has size O(2n). MCSP is thus in the class NP; indeed, an NP verifier
need only compare the output of a witness circuit C to f on every input in {0, 1}n. But how does MCSP fit
into the class NP?

Kabanets and Cai [KC00] showed that if MCSP ∈ P, then one-way functions do not exist, and hence
“cryptography breaks”.1 But conversely, a line of work beginning with the seminal paper of Murray
and Williams [MW17] establishes significant barriers towards proving that MCSP is NP-complete. Firstly,
[MW17] showed (unconditionally) that MCSP cannot be complete for NP under “super-simple” reductions,
e.g., deterministic many-one reductions where each output bit is computable in o(

√
N) time (where N is the

input length). This is in contrast to essentially every other natural NP-complete problem, such as SAT and
3Coloring. The intuition behind this result of [MW17] is that a hardness reduction to MCSP must output
the truth table of a complex function, and so the hardness reduction itself cannot be too simple. Murray
and Williams [MW17] furthermore showed that the NP-completeness of MCSP would imply new complexity

1One-way functions are widely believed to exist.
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lower bounds, specifically, EXP 6= ZPP.2 Fu [Fu20] recently improved this result by weakening the hypoth-
esis: EXP 6= ZPP is implied even by the hardness of MCSP for sparse tally languages within ZPP under
non-adaptive reductions.

In general, one may ask questions of the form, “Is MCSP variant X complete for class Y under type Z
of reductions”, and hope to either resolve them or connect them to other questions in complexity theory. In
terms of types of reductions, we recall the distinction between many-one (a.k.a. m-) reductions from A to
B, which simply convert instances of A to instances of B and return the decision on the B-instance, and
many-many (a.k.a. Turing) reductions, which use an oracle of B — which may be invoked many times —
to solve an instance of A. One important special type of many-many reduction is the non-adaptive (a.k.a.
truth-table) reduction, where each B-oracle query does not depend on the output of previous oracle queries.
See [All20] for more general background on circuit minimization and reductions.

(Almost-)NP-hardness for MCSP’s “distant cousins”. Although resolving the NP-completeness of
MCSP itself is certainly out of reach of current methods, recent works have given strong evidence for the
hardness of many variants of circuit minimization, in the form of NP-hardness or ETH-hardness (under re-
ductions which are possibly quasipolynomial-time, many-many, and randomized3) [Ila20a; ILO20; Ila20b;
ACM+21; LP21]. Of particular interest to us is the recent result of Ilango [Ila20b], which gives an adap-
tive, quasipolynomial-time, randomized NP-hardness reduction to AC0

d-MFSP (i.e., constant-depth formula
minimization).

Hardness under weak reductions for weak classes. Other works have analyzed the hardness of MCSP
for classes that are much weaker than NP. Many of the same works have studied the closely-related minimum
Kolgomorov time-complexity problem (MKTP), which is roughly a variant of MCSP using Turing machines
instead of circuits. (See [All20] for more details on MKTP.) All currently known results about MCSP, such
as [MW17; Fu20], also hold for MKTP. But interestingly, the past several years have seen new results which
hold for MKTP but have not been extended to MCSP.

Allender and Hirahara [AH19] showed that MKTP is hard for DET under non-uniform NC0 (many-one)
reductions. Subsequently, Allender, Garvia Bosshard, and Musipatla [AGM20] strengthened this result to
give non-uniform projections (i.e., reductions computable by circuits with only Not and constant gates).
Most recently, Allender, Gouwar, Hirahara, and Robelle [AGHR21] showed that MKTP is hard for NISZKL

— the class of problems with noninteractive statistical zero-knowledge protocols with logspace-computable
verifiers and simulators (see [AGHR21, Definition 2] for details), which contains DET — under non-uniform
projections.4

Hardness results when the type of reduction is weak, such as the above results of [AH19; AGM20;
AGHR21], are interesting for a number of reasons. Firstly, they “brush up” against the limits on hardness
of MCSP/MKTP under weak reductions established by [MW17; Fu20]. Secondly, they may actually imply
lower bounds for MCSP/MKTP in weak computational models. Indeed, if variant X is hard for class Y under
reductions of type Z, and Y is closed under Z, then one may conclude X is in fact hard for Y . [AH19] used
these insights to show that MKTP does not have small AC0[p] circuits, and [AGHR21] used their improved
reduction to show that MKTP does not have small Majority ◦ Tr (majority of threshold) circuits.

2 Questions addressed in this project

In this project we studied a number of questions around simple reductions to variants of circuit minimization.
Some of these questions led to “dead ends”, while others still may be productive research directions. In this
section, we summarize all the directions we studied, including those which proved unsuccessful. When
possible, we cross-reference to later sections of the report.

2The consensus on this statement is that it is true, but impossible to prove with current techniques.
3Randomization is typically helpful because it allows the reduction to explicitly construct hard functions. Randomized

reductions may typically be made non-uniform by hardwiring an appropriate choice of random bits.
4[AGHR21] also showed that MKTP is hard for NISZK under randomized many-one reductions. It was previously known

that MKTP — as well as MCSP — is hard for SZK under randomized many-many reductions [AD17].
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Can MKTP hardness results be replicated for MCSP? As discussed above, [AH19] showed that MKTP
is hard for DET under non-uniform NC0 reductions and used this to prove AC0[p] lower bounds against MKTP.
But a similar DET-hardness result for MCSP is not known. (Similar AC0[p] lower bounds against MCSP were
later proven by Golovnev et al. [GII+19], using an unrelated set of techniques. More on this below.) In
general, MKTP seems to be easier to analyze in hardness reductions than MCSP, because KT complexity
is easier to handle than circuit size. In particular, we consider the NISZKL-hardness-of-MKTP results of
[AGHR21]. The reduction of [AGHR21] is from a gap-promise problem about calculating the entropy of
NC0 circuits (which Allender et al. also show is complete for NISZKL). Its analysis uses some earlier tools
from work of Allender, Grochow, van Melkebeek, Moore, and Morgan [AGvM+18] for calculating the KT
complexity of polynomially-many independent samples from a distribution as a function of its entropy, and
this argument uses in an essential way the fact that the KT complexity of the hardest n-bit function can be
characterized very tightly (it is ≈ n). Unfortunately, such tight bounds are lacking for the circuit size of the
hardest function on n bits, and so we lack a corresponding reduction to MCSP. (See [AGvM+18, §7.1] for
more on this difficulty.)

Thus, in this project, we examine other ways of proving hardness results for MCSP. Specifically, we look
to extend the approach of Golovnev et al. [GII+19] for proving AC0[p] bounds against MCSP to explicitly
construct a simple, many-one hardness reduction for MCSP from some interesting problem. It will be useful
for us to first sketch [GII+19]’s approach. Firstly, consider the distributional distinguishing problem called
the coin problem; on inputs of length N , the (p, q)-coin problem is to distinguish a p-biased N -bit string
from a q-biased N -bit string with high probability. [GII+19] shows that there is a reduction from the
(1/2, 1/2− ε)-coin problem to MCSP for any ε < 1/N0.49; indeed, the reduction is a trivial reduction, which
follows (roughly) from showing that circuit complexities of 1/2-biased strings are higher than (1/2−ε)-biased
strings.5 Then, [GII+19] invokes a result of Shaltiel and Viola [SV10], which yields an AC0, many-many
reduction Majority to the (1/2, 1/2 − ε)-coin problem. Finally, AC0[p] lower bounds for MCSP follow from
standard AC0[p] lower bounds for Majority.

It will also be useful to briefly sketch [SV10]’s reduction. The crucial observation made by [SV10] is that
given an N -bit string x, sampling an M -bit string in which each bit is chosen randomly from x is the same
as sampling a (wt(x)/N)-biased string, where wt(x) denotes the Hamming weight of x. Picking M = N2, we
hence have a randomized reduction from the promise problem of distinguishing N -bit strings of weight N/2
vs. N -bit strings of weight N/2− 1 to the (1/2, 1/2− 1/

√
M)-coin problem (on M bits). This reduction can

indeed be made deterministic using amplification and the fact that approximate majority is in AC0 [Ajt83].
Finally, Majority reduces to the above promise problem in AC0 (the reduction is many-many and uses an
appropriate padding argument).

Our first hope was that we could somehow directly implement the [SV10] reduction (which, recall, is
a many-many reduction) to give a deterministic, many-one reduction from Majority to MCSP. This would
work if we had “AC0 gadgets for MCSP”; e.g., a ∨ gadget would given two instances (f, θ), (f ′, θ′) of MCSP,
would produce an instance (f∨, θ∨), such that MCSP(f∨, θ∨) = MCSP(f, θ) ∨MCSP(f ′, θ′). Unfortunately,
such objects seem not to exist in AC0 (although we did not prove that they are impossible). At this point, we
also considered instead attempting a reduction from Majority to MFSP, the minimum formula size problem,
since we do have direct-sum theorems for formula size. That is, given two functions f, f ′ : {0, 1}n → {0, 1},
the function f ∨ f ′ : {0, 1}2n → {0, 1} which maps (x, y) to f(x)∨ f ′(y) has formula size equal to the sum of
the formula sizes of f and f ′, ±1 (see e.g. [Weg87, §10.2]); this would at least give ∨ and ∧ gadgets in the
case θ ≈ θ′. But unfortunately, the size of (f ∨ f ′)’s truth table is N2 (for N = 2n), so this operation can
only be used a constant number of times in a polynomial-time reduction, ruling out its applicability in our
setting.

Finally, we recognized that since we were only seeking randomized/non-uniform reductions, we could
sidestep the issue of using approximate majority, and hope to use the [SV10] sampling trick directly, along
with bounds on complexity of biased functions à la [GII+19], to reduce Majority to MCSP. Indeed, we
manage to do this in §3, modulo an unproven conjecture on the circuit complexity of biased functions (see
Theorem 3.7).

5Actually, [GII+19] cannot quite conclude something quite this strong from existing bounds on the circuit complexity of
(1/2−o(1/polylog(N)))-biased functions; instead, [GII+19] uses bounds on the circuit complexity of O(1)-biased functions and
a hybrid argument. See [GII+19, p. 3] for a discussion. We use the same technique in §3.
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How important is adaptivity in circuit minimization reductions? Ilango [Ila20b] shows that
AC0

d-MFSP (depth-d formula minimization) is NP-hard under quasipolynomial-time randomized reductions.
[Ila20b]’s reduction is adaptive. Fu [Fu20] shows, on the other hand, that MCSP cannot be NP-hard (or
even ZPP-hard) under polynomial-time non-adaptive reductions, unless ZPP = EXP. We hoped to (1) show
that the reduction of [Ila20b] could be implemented as an (adaptive, quasipolynomial-sized, randomized)
AC0 reduction, and (2) extend [Fu20] to show that unless EXP 6= ZPP, AC0

d-MFSP cannot be NP-hard un-
der non-adaptive, quasipolynomial-sized, uniform AC0 reductions. If (1) and (2) were both true, we would
have the following disjunction of interesting statements: Either EXP 6= ZPP, or there is a problem (i.e.,
AC0

d-MFSP) which is NP-complete under adaptive, randomized quasipolynomial-sized AC0 reductions but
not under non-adaptive, uniform quasipolynomial-sized AC0 reductions.

We have good evidence that (1) may be true, but a full proof is out of scope for this REU report. We
briefly sketch our reasoning here. The reduction of [Ila20b] occurs in three stages, and it is ultimately a
series of constant-approximation-preserving reductions.

Firstly, AC0
d-MFSP is reduced to the problem of constant-approximating a minimization over depth-d

formulae with a ∨ gate at the top; we will denote this latter problem by AC0
d,∨-MFSP. This reduction

roughly consists of ∨-ing the input function with a function whose ∨-top depth-d complexity is much smaller
than its ∧-top depth-d complexity. The particular function used is due to H̊astad, Rossman, Servedio, and
Tan [HRST17] and is AC0-computable; so this step seems implementable in AC0.

The second step of the reduction is depth-reducing: Constant-approximating AC0
d,∨-MFSP is reduced to

(larger-)constant-approximating AC0
d−1,∨-MFSP. In this step, a collection of functions, parametrized by a

complexity parameter t, are sampled. When a function g is sampled with parameter t, certain nondeter-
ministic complexity measures of g satisfy certain inequalities in terms of t with high probability; if this high
probability event does occur, then [Ila20b] deduces information about the complexity of the input function f .
The functions g appear to be implementable in AC0. [Ila20b] uses amplification (sampling many g’s for the
same complexity parameter t) and is phrased using a Majority operation, but we should be able to implement
this (given sufficient amplification) in AC0 using the fact that approximate majority is in AC0. We remark
that the sampling of the functions g with certain complexity parameters is the crucial use of randomization
in the reduction of [Ila20b].

Finally, [Ila20b] observes that AC0
2,∨-MFSP is equivalent to DNF minimization, and invokes the almost-

optimal NP-hardness results for DNF minimization due to Khot and Saket [KS08], who showed that DNF
minimization on n variables cannot even be n1−ε-approximated, for any ε > 0.6 The [KS08] result uses
sophisticated hardness-of-approximation tools (i.e., probabilistically checkable proofs) and appears very un-
likely to be implementable in AC0. However, it is much stronger than what is required to make the reduction
of [Ila20b]; indeed, [Ila20b] only needs a (large) constant hardness-of-approximation factor. Hence here we
consider invoking earlier, less-optimal hardness results, in particular the one due to Allender, Hellerstein,
McCabe, Pitassi, and Saks [AHM+08], which proved only nε hardness for some ε > 0, and is technically
simpler. However, it is not completely clear whether the reduction of [AHM+08] is implementable in AC0.
In particular, it relies on some tricks, attributed to Gimpel by Czort [Czo99], for reducing partial DNF
minimization to total DNF minimization, which employ parity functions as gadgets to force particular terms
to be in minimal DNFs for some functions. We believe these gadgets may be replaceable by something com-
putable in AC0, but we have not sufficiently explored this direction. [AHM+08] ultimately invokes further
hardness-of-approximation results for set-covering problems, the AC0-implementability of which must also
be investigated further.

On the side of (2), i.e., [Fu20]-style results demonstrating the difficulty of proving hardness of AC0
d-MFSP

under non-adaptive, uniform, quasipolynomial-sized AC0 reductions, we make partial progress in this report.
Specifically, we are able to show the same conclusion for MFSP (i.e., without the depth-d restriction), and
we give an exposition in §5 which may shed additional light on the proof of [Fu20]. However, the techniques
appear to be incapable of replicating this result in the setting of depth-bounded formula complexity.

How robust is the definition of NISZKL? The class NISZKL, of problems with non-interactive, statistical
zer oknowledge proofs with logspace-computable verifiers and simulators, was introduced by [AGHR21], who

6There is one additional step here, which is required to switch measures of DNF complexity, but it appears implementable
in AC0 as well.
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showed that MKTP is hard for it under non-uniform projections. We are interested in better understanding
how robust the logspace-computability requirements, i.e., if we make stronger or weaker restrictions on
the simulator and verifier, does it change the set of problems? In §4, we include a proof of the fact that
NISZKL = NISZKAC0[⊕], i.e., it does not change the set of problems to restrict the simulator and verifier to be
constant-depth circuits augmented with parity gates. We remark that this result follows immediately from
the work of [AGHR21].

3 Projection from Majority to MCSP

Let µMp denote the distribution over p-biased M -bit strings, i.e., each of the M bits is independently sampled

from a Bernoulli(p) distribution. Let exp(λ) = e−λ.

Definition 3.1. Given N ∈ N and t ≤ N
2 , define the symmetric threshold set STr as

STrN,t = {x ∈ {0, 1}N : t ≤ wt(x) ≤ N − t}.

Lemma 3.2. For sufficiently large n ∈ N, let N = 2n. Assuming Conjecture 3.6 (to be stated below),
there exists t ∈ [0.02N, 0.48N ], such that there exists randomized and nonuniform projections from STrN,t to
MCSP.

To prove Lemma 3.2, we use tools and the overall structure from Golovnev et al. [GII+19]:

Theorem 3.3 (Lupanov). Let f : {0, 1}m → {0, 1} be any Boolean function that is supported on k ≤ 2m−1

inputs, where k ≥ Ω(2m). Then, for all sufficiently large m ∈ N,

size(f) ≤
log
(
2m

k

)
log log

(
2m

k

) +O

(
2m logm

m2

)
.

Moreover, all but o(1) fraction of random functions f require

size(f) ≥
log
(
2m

k

)
log log

(
2m

k

) + Ω

(
2m logm

m2

)
.

Recall that for k = pM for p ∈ (0, 1), as M → ∞ we have the asymptotic approximation log
(
M
k

)
≈

MH(p) where H(·) is the binary entropy function.
We also require the following form of McDiarmid’s inequality:

Theorem 3.4 (McDiarmid). Let X1, . . . , XM ∈ {0, 1} be independent random variables for M = 2m. Let

f : {0, 1}m → R be any function and c ∈ R such that for all 1 ≤ i ≤ N and b1, . . . , bM , b̃i ∈ {0, 1},∣∣∣f(b1, . . . , bM )− f(b1, . . . , bi−1, b̃i, bi+1, . . . , bM )
∣∣∣ ≤ c.

Then, for any λ > 0,

Pr [|f(X1, . . . , XM )− E[f(X1, . . . , XM )]| ≥ λ] ≤ 2 exp

(
−2λ2

Mc2

)
.

We use Theorem 3.4 to prove the following corollary. It is analogous to [GII+19, Theorem 3.1], but we
use a slightly different setting of parameters; in particular, we get a tighter probability bound by relaxing
the distance. For p ∈ [0, 1], let sMp = Ef∼µMp [size(f)].

Corollary 3.5. Let M = 2m and let p ∈ [0, 1]. Then

Pr
f∼µMp

[|size(f)− sMp | ≥M2/3m] ≤ exp(−O(M−1/3)).
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Proof. Follows by setting λ = M2/3m, since changing one bit of an M -bit truth table changes the circuit
complexity by at most O(m). Indeed, the resultant probability bound is

2 exp

(
−2M4/3m2

Mm2

)
= exp(−O(M1/3)).

We make the following conjecture about sMp :

Conjecture 3.6. Let M be sufficiently large. Then for any p, q such that 0.02 ≤ p < q ≤ 1
2 , sMp ≤ sMq .

We feel that Conjecture 3.6 is very natural and very likely to be true. We communicated with Rahul
Ilango about the conjecture, and he shares our view as to its likelihood, but believes it may be difficult to
prove.

Now, we have:

Proof of Lemma 3.2. Let m = 10n and M = 2M = N10. Define δ = 0.46, p0 = 0.02, and for 0 < i ≤ δN ,
define pi = p0 + i · 1

N . In particular, pδN = p0 + δ = 0.48.
The Chernoff bound implies that a random sample from µMp0 contains has Hamming weight at most 0.04M

with probability 1− o(1), and hence

sMp0 ≤
MH(0.04)

m+ log(H(0.04))
+ o

(
M

m

)
≤ (0.25 + o(1))

M

m

since H(0.04) ≈ 0.242. Similarly,

sMpδN ≥ (0.99 + o(1))
M

m

since H(0.46) ≈ 0.995. Hence there exists some i ∈ {0, . . . , δN − 1} such that

sMpi+1
− sMpi ≥ Ω

(
M

mN

)
= Ω

(
N9

n

)
. (∗)

Let t = pi+1N , and consider the following randomized projection P from STrN,t to MCSP: On input
x ∈ {0, 1}N , sample a string y ∈ {0, 1}M by independently sampling each of the M bits as a random bit
from x. Then output (y, θ) where θ = (sMpi+1

+ sMpi )/2.
It remains to analyze the randomized correctness of this projection, and to show that it may be made

nonuniform by hard-wiring randomness. The crucial observation, as in [SV10], is that y is sampled from µMpx
where px = wt(x)/N . Note that if x is a YES-instance of STrN,t, then px ∈ [pi+1, 1−pi+1]. WLOG px ≤ 1

2 ,7

and by Conjecture 3.6, we have sMpx ≥ s
M
pi+1

, and Corollary 3.5 implies that with probability exp(−O(N10/3)),

if y ∼ µMpx , size(y) ≥ sMpi+1
−M2/3m = sMpi+1

−O(N20/3n) ≥ θ (the last inequality follows from (∗)). Similarly,

if x is a NO-instance of STrN,t, with probability exp(−O(N10/3)), if y ∼ µMpx , size(y) ≤ θ. This is sufficient
to establish randomized correctness. Finally, we note that union-bounding over incorrectness for any input
x ∈ {0, 1}N , the error probability is still 2N · exp(−O(N10/3)) < 1, and so we may hardwire an appropriate
choice of randomness and make the projection non-uniform.

Theorem 3.7. For sufficiently large N ∈ N, assuming Conjecture 3.6 (to be stated below), there exists
randomized and nonuniform projections from Majorityn to MCSP.

Proof. Follows from Lemma 3.2 and padding STrN,t.

Interestingly, [MW17] seems to rule out randomized projections from Majority to MCSP using much less
randomness (in particular, o(N0.2)).

7Note that sM1−p ∈ [sMp − 1, sMp + 1], since we can biject every string with its complement and add a ¬ gate at the output of
every circuit.
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4 Robustness of definition of class NISZKL

[GSV99] introduced the class NISZK of promise problems Π, having a non-interactive statistical zero knowl-
edge proof system. Recently, [AGHR21] defined NISZKL; the definition is identical, except that the verifier
and simulator are restricted to log-space, instead of polynomial time (in the size of the input). See [AGHR21]
for details on the definition.

[GSV99] showed that a promise version of entropy approximation for circuits is complete for NISZK, and
[AGHR21] showed that the analogous problem restricted to a weak subset of NC0 circuits is complete for
NISZKL. The problems are defined formally as follows:

Definition 4.1. Let a circuit C : {0, 1}m → {0, 1}n represent a probability distribution X on {0, 1}n induced
by the uniform distribution on {0, 1}m. Then Promise · EA is defined to be the promise problem

EAYES = {(C, k) | H(X) > k + 1}
EANO = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X. Promise · EANC0 is defined similarly, except that the circuits C
considered in the input have gates of fan-in at most 2 and each output bit depends on at most 4 input bits.

Then we note the following theorem:

Theorem 4.2 ([AGHR21]). Promise · EANC0 is complete for NISZKL, under ≤proj
m .8

We prove the following observation, which follows quite readily from the techniques of [AGHR21]:

Observation 4.3. NISZKL = NISZKAC0[⊕], where NISZKAC0[⊕] is defined similar to NISZKL, except that the

verifier and simulator are implemented by log-space uniform AC0[⊕] circuits.

Proof. As logspace-uniform AC0[⊕] computations may clearly be implemented in logarithmic space, NISZKAC0[⊕] ⊆
NISZKL. Hence, in light of Theorem 4.2, to prove Observation 4.3 it suffices to show that Promise · EANC0 ∈
NISZKAC0[⊕]. In order to do this, we follow [AGHR21] in re-using [GSV99]’s NISZK protocol for Promise·EA ∈
NISZK. We show that for inputs as in Promise · EANC0 , the protocol may be implemented in NISZKAC0[⊕]
(whereas [AGHR21] proved it only for NISZKL).

The protocol proceeds by transforming the input y = (C, k) to a distribution Z, encoded by a circuit
Dy of size poly(s), where s = |y|. The protocol in essence involves the verifier and the simulator evaluating
Dy over some input. Thus showing that there exists a uniform AC0[⊕] family of circuits {Bn}, such that
Bpoly(s)(y, ·) = Dy (for inputs satisfying the promise Promise · EANC0), proves Observation 4.3. We verify
this by going through the steps in transformation by [GSV99] (using the notation of [AGHR21]):

1. Let X ′ consist of poly(s) copies of X.

2. Let Y = (h, h(X ′)), where h is chosen uniformly at random from a 2-universal hash family H, such
that the elements of H can be represented using poly(s) bits.

3. Let Y ′ consist of poly(s) copies of Y .

4. Let Z = (Y ′(r), h′, h′(r)), where r denotes the input to Y ′. Again h′ is chosen uniformly at random
from a 2-universal hash family H whose elements can be represented using poly(s) bits.

Let z = (C, k) denote an instance of Promise · EANC0 . Let |z| = s. As C is a NC0 circuit, it can be simulated
by a AC0[⊕] circuit. So the poly(s) copies of X can be generated by taking poly(s) random bits as input.
The hash families used in steps 2 and 4 can be computed in AC0[⊕] and require only poly(s) bits to represent.
9 Thus Y can be computed by an AC0[⊕] circuit. And so poly(s) copies of Y can be generated similarly.
Dy is obtained by restricting the bits corresponding to z, to y, in the final AC0[⊕] circuit.

We hypothesize that the requirements for the verifier and simulator in NISZKL may also be relaxed
without changing the class of problems. Specifically, we conjecture that NISZKL = NISZKDET.

8≤proj
m stands for many-one projection reduction.

9Indeed, the hash family given by multiplication of the input by polynomially-large Boolean matrices is 2-universal.
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5 Attempt to extend result by [Fu20] to AC0
d-MCSP

We note the following result by [Fu20].

Theorem 5.1 ([Fu20, Corollary 21]). If MCSP is ZPP-hard under polynomial-time non-adaptive reductions
(denoted by ≤P

tt)
10, then EXP 6= ZPP.

We sketch a proof (slightly simplifying the exposition of [Fu20], who proved a stronger statement). Firstly,
we use the following lemma:

Lemma 5.2 (Corollary of [Fu20, Lemma 17]). There exists a unary language L ∈ ZTIME(2O(n)),11 such
that L 6∈ ZPP.

Proof sketch of Theorem 5.1. Let L be as in the statement of Lemma 5.2. Define L′ = Pad(L), where
Pad(L) = {12n+n | 1n ∈ L}. Thus L′ ∈ ZPP.

By assumption, L′ ≤P
tt MCSP. Thus, there exists a machine M(·) that carries out the reduction in

polynomial time p(n).
Define the language R = {(1n, i, j) | bit i of query j outputted by M(12

n+n) is 1, and i, j ≤ p(2n+n)}.
We have that R ∈ EXP: Given (1n, i, j), compute M(y) for y = 12

n+n, and check bit i of query j of the
output.

Assume, towards contradiction, that EXP = ZPP. Thus R ∈ ZPP ⊆ P/poly. So R is computed by some
family of circuits {Cn} of polynomial size.

Finally, we claim that we can conclude that L ∈ EXP, and thus L ∈ ZPP, a contradiction. L ∈ EXP
as follows: Given x = 1n (an instance of L), generate y = 12

n+n (the corresponding instance of L′), and
compute M(y). Get all the queries to MCSP from the output of M(y). For a query q, if the threshold s is
larger than the size of Cn, the query has answer YES, otherwise brute-force over all possible circuits of size
≤ s to get the answer to q.

Consider the following uniformity condition for a quasi-polynomial sized circuits {Dn}: Given (n, h, g)
output 1 iff there is an edge from gate g to gate h in Dn. In linear time; we can extend Theorem 5.1 to the
following:

Theorem 5.3. If MCSP is ZPP-hard under deterministic uniform quasi-polynomial time non-adaptive Tur-
ing reductions, it would imply EXP 6= ZPP. The same holds for MFSP.

Theorem 5.3 can be proved by the following minor changes to the proof of Theorem 5.1 (keeping rest of
the steps unchanged):

1. Assume L′ is reducible to MCSP (resp. MFSP) under uniform quasi-polynomial time non-adaptive

reductions. Then L′ ≤quasi
tt MCSP (resp. MFSP), and there exists a machine M(·) that carries out the

reduction in quasi-polynomial time u(n) = 2log
c n (for some constant c).

2. R = {(1n, i, j) | bit i of query j outputted by M(12
n+n) is 1, and i, j ≤ u(2n + n)}. R ∈ EXP, as

M(y), for y = 12
n+n takes time u(2n + n) = 2log

c(2n+n) ∈ O(2n
c+1

).

M(y) for y = 12
n+n takes O(2n

c+1

) time. And as the number of queries is 2O(nc+1) (obtained by output of
M(y)) and brute forcing over polynomial sized circuits takes exponential time, L ∈ EXP and the original
argument goes through.

5.3 cannot be extended to AC0
d-MFSP, as it seems to break down when trying to show L ∈ EXP. It

is so because the brute force for MFSP queries with “large” threshold (larger than some polynomial) was
avoided by the fact that R ∈ P/poly. But for AC0

d-MFSP, R ∈ P/poly does not suffice, as the circuits Cn can
potentially have non-constant depth (and are not guaranteed to be formulae). Indeed, for the argument to
go through even in the AC0

d-MCSP case, one would need to assume EXP ∈ ZPP ∩ AC0
d, which is false.

10A ≤T
tt B iff there exists some function f computable in time T , such that f(x) = (q1, q2, · · · , qt, C′) for x ∈ A, where C′ is a

circuit with t inputs and x ∈ A⇔ C′(B(q1), B(q2), · · · , B(qt)) = 1. Here qi are referred to as queries to B. (This is equivalent
to the characterization of non-adaptive reductions as many-many reductions whose oracle queries do not depend on results of
previous queries.)

11ZTIME(·) stands for zero error probabilistic time.
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