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Boolean Circuit

A Boolean circuit is composed of logic gates and wires, and
computes a Boolean function f : {0, 1}k −→ {0, 1}.

Figure: Circuit for XOR

C (S) denotes the size or complexity of a circuit S , and is
usually defined to be the number of gates in S .
The circuit depth is the length of the longest path from an
input to an output gate.
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Circuit complexity classes

Definition

AC0 corresponds to the set of problems solvable by
constant-depth, unbounded fan-in, polynomial-sized family of
circuits with AND, OR, and NOT gates.
NC0 is defined similarly to AC0, with the exception that the
AND and OR gates have a fan-in of two, and thus each output
gate depends on a constant number of input gates.
Projections are functions computed by NC0 circuits, where
each output bit is a constant 0/1, or, same as or negation of
an input bit.
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Circuit complexity classes (contd.)

Uniformity
Circuits are non-uniform model of computation, inputs of different
lengths are computed by different circuits. A family of circuits
{Cn}n∈N (where Cn is applicable for inputs of length n) is uniform
if the description of Cn, can be generated in some resource bound
manner, given n.

Example
A family of circuits is DLOGTIME-uniform, if description of Cn,
can be generated in O(log n) time, give n.
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Reductions and Hardness

Many-one reduction
Given two languages L1 and L2, and a complexity class C, L1 is
many-one reducible to L2, L1 ≤C

m L2, if ∃ a C-computable function
f , such that x ∈ L1 ⇔ f (x) ∈ L2.

Example

L1 = {binary strings with odd number of 1}
L2 = {binary strings with even number of 1}
L1 ≤P

m L2.

Turing reduction
Given two languages L1 and L2, and a complexity class C, L1 is
Turing reducible to L2, L1 ≤C

T L2, if L1 is C-computable, given
access to an oracle O for L2.
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Reductions and Hardness (contd.)

Adaptive vs Non-Adaptive Turing reduction
In a non-adaptive Turing reduction, a query asked to the oracle O
does not depend on the result of a previously asked query (whereas
in an adaptive reduction it does). A non-adaptive reduction can be
thought of as presenting O with a single list of queries.

Definition
A language L is hard under reduction R, for some complexity class
C, if all languages in C are reducible to L under R.
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Minimum Circuit Size Problem

MCSP
Let T (S) denote the binary string of length N = 2n, representing
the truth table of the Boolean function computed by circuit S , with
n input bits. Then for x ∈ {0, 1}*, θ ∈ N

MCSP = {(x , θ) | ∃ circuit S s.t. C (S) ≤ θ and T (S) = x}

AC0
d -MFSP (Minimum formula size problem)

AC0
d -MFSP is defined similarly to MCSP, except that S is an AC0

circuits of constant depth d . And C (S) is measured as the number
of leaf nodes in S .
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Majority Problem

Definition
Majority (Maj) is the Boolean function that evaluates to false when
half or more inputs are false and true otherwise.

Example

Maj(110) = 1 and Maj(100) = 0.

Known lower bound

Maj 6∈ AC0.
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Coin Problem

Definition
(p, q)-coin problem is to distinguish a p-biased N-bit string from a
q-biased N-bit string with high probability, where a p-biased N-bit
string is sampled so that each bit is independently set to 1 with
probability p.
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Limitations on NP-hardness for MCSP/MKTP

Results of [MW17]:
MCSP/MKTP unconditionally cannot be hard for NP under
very simple reductions
If MCSP/MKTP are hard for NP under any deterministic
polynomial-time many-one reductions, EXP 6= ZPP
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Hardness of MKTP

Recent results [AH17,ABM20,AGHR21]: MKTP is hard for
DET and even coNISZKL under non-uniform projections
Results exploit properties of MKTP which are lacking in
MCSP, specifically, bounds on hardness of tightest function
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Reduction from MCSP to coin problem

Result of [GII+19]: MCSP does not have small AC0[p] circuits

Replicates result of [AH17] for MKTP, using different
techniques
Exploits difference in circuit complexity of random biased
functions

Constructs reduction from coin problem to MCSP
Combines with [SV10] reduction from Maj to coin problem
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Our first result

Crucial observation of [SV10]: Given x ∈ {0, 1}N , sampling an
M-bit string of random bits of x is equiv. to sampling a
wt(x)/N-biased string
We make assumption on monotonicity of expected complexity
of biased functions, and build on [GII+19] and [SV10] to prove:

Theorem
(Assuming assumption above,) there exists a non-uniform
projection from Maj to MCSP.
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How important is adaptivity?

AC0
d -MFSP is NP-complete under quasipolynomial,

randomized, adaptive reductions [Ila20]
MCSP cannot be ZPP-complete under polynomial-time,
deterministic, non-adaptive reductions, unless ZPP = EXP
[Fu20]
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(Slightly) improving [Fu20]

We show:

Theorem
If MCSP is ZPP-complete under quasipolynomial-time,
deterministic, non-adaptive reductions, then ZPP 6= EXP.

Same seems to hold for MFSP. We also give a slightly cleaner
exposition than [Fu20].
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Analyzing the reduction of [Ila20]

We give evidence that the reduction of [Ila20] can be implemented
in AC0. [Ila20]’s reduction occurs in three stages...

Reducing depth-d formula minimization to
O(1)-approximating depth-d ∨-top formula minimization
Reducing O(1)-approximating depth-d ∨-top formula
minimization to O(1)-approximating depth-(d − 1) ∨-top
formula minimization
Invoking pre-existing hardness reductions for DNF
minimization (= depth-2 ∨-top formula minimization)
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