
Programmable Routers: RMT and P4
Tavis Johnson and Delta Lyczak

Abstract
Internet routers deal with significant amounts of internet traffic in everyday use. This increasing
amount of traffic over the internet affects the performance, and speeds, at which these routers
operate. The goal of our research project is to understand how routers manage processing packets
at such high speeds while remaining flexible and reconfigurable. This paper demonstrates what we
have accomplished during the 2021 DIMACS REU program understanding the layers of
abstraction, key networking concepts, pipelined systems, along with the history of routing software,
hardware, and information on the completed P4 programming exercises. We hope to be able to
design improvements for the performance of routers and the management of campus network
resources.

Introduction

Routers
Data sent over the internet travels in the form of discrete packets. These packets pass through
devices called routers. Routers process headers containing information about the packets then
forward them to the next step in their journey. Router design has been improved over the years in
an effort to maximize router speed, and programmability while minimizing power and area
requirements. Early router design optimized using hardware for an increase in speed. However,
with this came problems as specifically designed hardware does not allow for ease of modification.
This was something modern routers needed to solve. Modern Routers would need to now allow for
reconfigurability and the research and development of new network protocols.

Router Programmability
In terms of programmability modern day routers need to be able to process data in accordance
with protocols designed and/or set by the user. Thanks to the achievements of modern
programmable routing hardware, packets are able to be parsed and matched with increased
efficiency and power. This increased flexibility allows for more unique and efficient protocols to be
designed. This along with the development of programming languages allows for greater control
over the hardware.

This Project
Our goal for this project was to learn and understand the connection between the hardware and
software in router programming. Then to use it to implement the network protocols that we had
learned. This was important as we needed to understand what we were going to program before



we started to program it. If we could understand the constraints of the hardware we could see
where the connections to the software played a role. Our main goal was to achieve an
understanding of how these concepts relate to router programming. In addition, to understanding
the history of the routers, protocols, and how algorithms and P4 language improve the speed and
efficiency of router forwarding.

History

Multi-Gigabit Router (MGR)
Released in 1998, “A 50-Gb/s IP Router” describes the MGR router-design which would become
the standard for about the next decade. MGR replaced previous hardware-based designs with a
software approach. The core forwarding functionality of the router was implemented as assembly
instructions for a reduced instruction set processor. Packet header fields are extracted by a
fixed-function parser and passed to the forwarding engine that runs the forwarding algorithm. The
fields are updated and the output-port selected before being passed back to be reassembled and
passed to the egress port through a crossbar switch. Any cases not handled by the forwarding
engine result in the packet being sent to a general-purpose network-processor that operates much
slower but handles all cases (Partridge et al., 1998).

While MGR was capable of improving the speed and reconfigurability of routers, it had a few
problems that resulted in the design eventually being superseded. The consequence of
implementing the forwarding algorithm in software and relying on caching to improve performance
is non-deterministic behavior. Depending on the workload, cache-misses may be common or the
forwarding or network processors may be overworked. Additionally, limits on preassigned cache
and memory sizes made it difficult for engineers to accommodate every use-case with differently
sized tables. Finally, newer developments in programmable hardware eventually made hardware
more practical due to speed and parallelism.

OpenFlow
In the years following the proliferation of MGR, hardware performance improved and pipelined
router designs began to be created. These designs brought improvements over the
non-deterministic, slower, and less parallelizable MGR routers. The main problem with these
pipelined hardware routers was their fixed-function nature. Routers often offered a narrow set of
control through vendor-specific interfaces and very-limited programmability. The OpenFlow
protocol was introduced to improve the reconfigurability of these devices, opening new possibilities
for research on emerging networking protocols and technologies in the field (McKeown et al., 2008)
.

Reconfigurable Match-Action Tables (RMT)
While the fixed-function pipelined routers of the 2000s offered some improvements over MGR, they
lacked severely in reconfigurability. A number of fixed-function tables with a predefined number of
rows would match on a number of fixed fields to decide how packets should be routed. With
emerging network protocols and diverse switch use-cases, these limitations were real problems.



The solution to this was RMT. This design relied on a fully-programmable pipelined architecture
that could be reconfigured in the field to serve different use-cases and new network protocols.

At the start of the RMT pipeline is a programmable parser configured with all required header fields
and possible header orders. The parser extracts the required fields and passes them to the
match-action pipeline. The match-action pipeline consists of a series of tables of programmable
dimension that match on parsed fields and perform a corresponding programmable action
depending on the match. Each table is one stage of the pipeline and the resources available to the
pipeline are shared across all stages and can be allocated however is needed depending on the
use-case. RMT describes a set of match-action stages on the ingress and egress side separated
by a switching fabric though this distinction is mainly logical rather than physical. After the final
match-action stage, the modified packet headers are passed to a programmable deparser that
reassembles the headers and sends them along with payload to an egress port (Bosshart et al.,
2013).

Programming Protocol-Independent Packet Processors (P4)
While the OpenFlow standard proved useful for programming early pipelined routers, the
introduction of RMT came with a problem: OpenFlow was designed for modifying the behavior of
fixed-function pipelined routers and was not expressive enough to leverage the full reconfigurability
potential of RMT routers. To solve this problem, the P4 programming language was created,
extending off of the OpenFlow standard. The logical structure of P4 models the physical structure
of the RMT pipeline, allowing full control over RMT hardware. Furthermore, the logical layers of
abstraction provided by the P4 language allow for the same program to be compiled for a number
of different architectures including fixed-function and software routers. Programs not-suited to the
target architecture will simply fail to compile while valid programs can be deployed to the hardware
and managed using a standardized control-interface (Bosshart et al., 2014).

Figure 1: P4 language constructs mapped onto RMT pipeline
Credit: Rutgers Networking Lecture at https://slideplayer.com/slide/17811699/

https://slideplayer.com/slide/17811699/


Applications

Mininet
The majority of the exercises we completed over the course of this project were done in software.
There are multiple reasons that this might be advantageous. Experimenting using virtual
software-defined networks decreases prototyping time and improves flexibility. Furthermore, it
eliminates the need for expensive physical hardware and eases debugging. For the
software-based exercises we performed, we used the virtual-network software Mininet. Mininet
allows for easy provisioning and experimentation with virtual hosts and switches using a
command-line interface and API. Using Mininet, we were able to quickly set up virtual network
environments and experiment with each host from the command-line. Gaining an understanding of
Mininet enabled us to better understand network topology concepts and Layer 2 and 3 network
protocols.

P4 Exercises
The bulk of the code written for this project consists of a series of virtual software-defined
networking exercises. These exercises were published in the nsg-ethz/p4-learning GitHub
repository along with accompanying lecture-slides. Skeleton P4 programs were provided with
important sections removed that we were responsible for completing and testing in a Mininet
environment (p4-learning, 2021). Through these exercises, we investigated topics including but not
limited to Layer 2 and 3 packet routing, equal-cost-multi-path routing, sketch data structures,
packet time-to-live, and fast reroute. In addition to writing P4 programs for the router data-plane,
some of these exercises involved writing control-plane code in Python as well as scripts to initialize
router tables. Working on both the data-plane and the control-plane gave us a better understanding
of proper separation of roles and the strengths and limitations of each.

Figure 2: Snippet of Header section



Figure 3: Snippet of Parser Section

Figure 4: Snippet of ECMP exercise



Tofino
Complications regarding scheduling and hardware-availability prevented us from working with the
Tofino hardware-router as early as we would have liked. We were however, able to make the most
of this delay by working on more advanced software-based P4 exercises. Once the Tofino router
was reconfigured and ready for our exercises, we were able to get started working on a simple
boilerplate exercise just prior to the end of the program. A few factors made this more difficult
compared to the software-routing exercises. Working with the physical hardware required more
setup and an understanding of some hardware-specific blackbox components. Additionally, the
Barefoot software development kit we were using was designed around an older version of P4
(P414) with somewhat different syntax than the version we had used in our exercises
(tofino-boilerplate, 2020). We were able to successfully step through the building process and are
currently working on reverse engineering the boilerplate code and completing some exercises with
it. We expect to continue working on the Tofino router for some time after the formal end of the
2021 DIMACS REU program.

Figure 5: Tofino Boilerplate Control Plane Test

Discussion

Key Concepts
A key component of this project is the combination of application-exercises with historical research.
Understanding the history of routing hardware was critical in developing a deep understanding of
the logical structure of P4 and the way programmable routing is handled at scale. Additionally,
studying routing technologies chronologically helped to reveal the interdependent nature of these
architectures and tools. For example, because P4 mirrors the pipelined architecture of an RMT
router, our research into the history, structure, and design of RMT gave us a much stronger
understanding of the capabilities and limitations of the data-plane and the anatomy of a P4
program. Investigating L2 and L3 routing demonstrated the multiple levels of abstraction at which
routers can effectively operate.



Each of the exercises taught valuable skills that could be carried over to different networking fields.
From the equal-cost-multi-path routing, we were able to understand how to perform load balancing
using hashing based on the packet flow. This allowed us to keep packet order while distributing the
packets by ensuring packets with the same source and destination Ip as well as the same source
and destination port hashed to the same next hop. In the Count-Min-Sketch exercise, we were able
to understand how probabilistic data structures could be used to ensure packet speed at the cost of
occasionally having a wrong answer. We were able to use registers and hash functions to estimate
the occurrences of distinct elements. This also showed us how the estimation using the
Count-Min-Sketch changes based on the flow as the accuracy sketch increased with the size of the
flow. By studying these exercises not only did we receive a greater understanding of the P4
programming language but we received a greater understanding of networking concepts that we
could translate to different fields.

Research and Team Meta
Before working on the project exercises, we read through papers on the history of routers. This
allowed us to have a better understanding of what we were learning. We would then meet as a
group and discuss the papers and our understanding along with any of the questions that we may
have had. This created a strong foundation for when it came to working through the problems that
occurred with each of the exercises. Working through the exercises the team worked by trying
problems on their own and then moving towards the solutions any problems crossed would first be
brought to the group to discuss understanding and then bringing any questions that could not be
solved to our mentor Srinivas. By having group meetings we were able to break down and
understand the material on a weekly basis. The academic environment of the group allowed for
exchange of ideas from all areas of networking research.

Conclusion
While our work with the Tofino router was relatively limited, we were able to meet our listed
forwarding goals and more in a software environment in addition to our historical
background-research. The background we have gained regarding these tools and the technologies
upon which they rely are applicable to network programming and beyond. While we intend to
continue exploring P4 and beginning work on the Tofino router beyond the end of this program, the
knowledge we have gained thus far is already widely-applicable. Pipelined hardware systems are
common far beyond networking fields and stagnation in general-purpose processors has
necessitated a shift toward programmable hardware solutions for problems where speed and
throughput are high priorities. With this project, we have developed an intuition for the hardware
trade-offs present in pipelined programmable hardware, the separation of responsibility between
high and low-speed flows (data/control-plane).



Acknowledgements
We would like to thank Dr. Srinivas Narayana for his mentorship, the NSF OAC for their funding via
grant OAC-1925482, the authors of our letters of recommendation, and the 2021 DIMACS REU
program for this research opportunity.

References
Bosshart, P., Gibb, G., Kim, H. S., Varghese, G., McKeown, N., Izzard, M., ... & Horowitz, M.

(2013). Forwarding metamorphosis: Fast programmable match-action processing in
hardware for SDN. ACM SIGCOMM Computer Communication Review, 43(4), 99-110

Bosshart, Pat, et al. "P4: Programming protocol-independent packet processors." ACM SIGCOMM
Computer Communication Review 44.3 (2014): 87-95.

chipmunk-project/tofino-boilerplate: Chipmunk to Tofino. (2020). GitHub. Retrieved July 23, 2021,
from https://github.com/chipmunk-project/tofino-boilerplate

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., ... & Turner,
J. (2008). OpenFlow: enabling innovation in campus networks. ACM SIGCOMM computer
communication review, 38(2), 69-74.

nsg-ethz/p4-learning. (2021). [P4]. Networked Systems Group (NSG).
https://github.com/nsg-ethz/p4-learning (Original work published 2019)

Partridge, C., Carvey, P. P., Burgess, E., Castineyra, I., Clarke, T., Graham, L., ... & Winterble, S.
(1998). A 50-Gb/s IP router. IEEE/ACM Transactions on networking, 6(3), 237-248.


