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Data Privacy

We live in a world where data, especially public datasets is used for a
multitude of purposes, from research studies to ML and AI.

However, there is increasing concerns over the risk of sharing public
data.

Malicious agents can use public databases to find out sensitive
information about specific individuals.

Traditionally, Statistical disclosure control (SDC), or limitation (SDL)
have been used to limit privacy risk against certain attacks
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Differential Privacy

Differential privacy (DP) is a framework to quantify the amount of
privacy provided by a algorithm.

Given ϵ, a sanitation algorithm M is ϵ−DP for all S ⊂ M and for all
X and X ′ that differ by one record, it fulfills the following equation:

We want algorithms that satisfy ϵ− DP, while also preserving as
much useful statistics from the original dataset

One of our main sanitation algorithms will be synthetic data
generation: Generating artificial dataset from the original dataset.
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PSID Dataset

Main focus will be on The Panel Study of Income Dynamics (PSID)

It is the longest running longitudinal household survey in the world,
frequently used in many social science studies.

Currently, there has not been implementation of a differentially
private synthetic data generator on the database, and there has been
no formal study on it
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Goals for the summer

Implement a differentially private synthetic data generator for the
Panel Study of Income Dynamics

Formalize and quantify the privacy on this dataset and evaluate how
effective it will be

Our first goal will be to apply a synthetic data generator called
PrivBayes, which was used in the NIST PSCR Differential Privacy
Synthetic Data Challenge in 2019
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Thank You
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