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Data Privacy

We live in a world where data, especially public datasets is used for a
multitude of purposes, from research studies to ML and AI.

However, there is increasing concerns over the risk of sharing public
data.

Malicious agents can use public databases to find out sensitive
information about specific individuals.

Traditionally, Statistical disclosure control (SDC), or limitation (SDL)
have been used to limit privacy risk against certain attacks
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Differential Privacy

Differential privacy (DP) is a framework to quantify the amount of
privacy provided by a algorithm.

Given ϵ, a sanitation algorithm M is ϵ− DP for all S ⊂ range(M)
and for all X and X ′ that differ by one record, it fulfills the following
equation:

We want algorithms that satisfy ϵ− DP, while also preserving as
much useful statistics from the original dataset

One of our main sanitation algorithms will be synthetic data
generation: Generating artificial dataset from the original dataset.
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Main problem

Implement a differentially private synthetic data generator on different
datasets

Learn how to generate synthetic datasets that effectively preserve
usability while satisfying differential privacy.

We looked at 3 different studies from 2 different datasets, but we
primarily focused on a study using the Panel Study of Income
Dynamics

It is the longest running longitudinal household survey in the world,
frequently used in many social science studies.
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Synthetic Data Generation

We first implemented a synthetic data generator called
Datasynthesizer, which is based on a method called PrivBayes that
was used in the NIST PSCR Differential Privacy Synthetic Data
Challenge in 2019

The method is based on Bayesian Networks, a probablistic model that
represents the distribution of the variables but also the dependencies
between them.

The algorithm first generates a Bayesian Network based on the
variables and creates a probability distribution

Then it generates the synthetic data using the probability distribution.

Noise is injected in both processes to satisify DP.
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Bayesian Network

Figure: Taken from PrivBayes. Zhang J. et.al (2017)
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Variables to Consider

ϵ, the amount of data privacy budget we have. The more budget, the
better the synthetic data since we are injecting less noise

β, How much privacy to allocate to building the network vs generation

Maximum degree of the network. Bigger/complex networks could
better describe the relationships between variables, but the trade-off
is that more noise is injected to the network as a whole to ensure DP
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Marginal Distributions of Head Age based on ϵ(β = 0.3)
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Marginal Distributions of Head Age based on β(ϵ = 1)
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Main Study

The main study that we did analysis on is the ”New Estimates of the
Sandwich Generation in the 2013 Panel Study of Income Dynamics”
by Friedman, et.al (2014).

The study looks at the transfer of wealth and time in people who
have parents and children.

We replicated four of the tables in the study based on the original
data, then compared to results to when we used DP synthetic data.

We examined how changing the variables affected the effectiveness of
the analysis.
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Table 1 in the Sandwich Study
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Table Distribution Comparisons: Male Proportions
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Table Distribution Comparisons: Male Proportions Mean
Average Error
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Distribution Comparisons: Male Counts
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Distribution Comparisons: Male Counts Total Difference
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Distribution Comparisons: Female Proportions
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Distribution Comparisons: Female Mean Average Error
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Distribution Comparisons: Female Counts

Thomas Chen (DIMACS June 2024) Differential Privacy in Applied Social Science Settings July 18, 2024 18 / 25



Distribution Comparisons: Female Counts Total Difference
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Z score comparison

Thomas Chen (DIMACS June 2024) Differential Privacy in Applied Social Science Settings July 18, 2024 20 / 25



Future Goals

Look at how data synthesis works with longitudinal studies

Comparing these results to another DP synthetic data Generators

Examining how other kinds of statistical analyses fare under these
synthetic data generators.
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