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@ We live in a world where data, especially public datasets is used for a
multitude of purposes, from research studies to ML and Al.

@ However, there is increasing concerns over the risk of sharing public
data.

@ Malicious agents can use public databases to find out sensitive
information about specific individuals.

e Traditionally, Statistical disclosure control (SDC), or limitation (SDL)
have been used to limit privacy risk against certain attacks
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Differential Privacy

e Differential privacy (DP) is a framework to quantify the amount of
privacy provided by a algorithm.

@ Given ¢, a sanitation algorithm M is e — DP for all S C range(M)
and for all X and X’ that differ by one record, it fulfills the following
equation:

Pr(M(X) € 5)
Pr(M(X) € 9) = &Pl

@ We want algorithms that satisfy ¢ — DP, while also preserving as
much useful statistics from the original dataset

@ One of our main sanitation algorithms will be synthetic data
generation: Generating artificial dataset from the original dataset.
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Main problem

@ Implement a differentially private synthetic data generator on different
datasets

@ Learn how to generate synthetic datasets that effectively preserve
usability while satisfying differential privacy.

@ We looked at 3 different studies from 2 different datasets, but we
primarily focused on a study using the Panel Study of Income
Dynamics

@ It is the longest running longitudinal household survey in the world,
frequently used in many social science studies.
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Synthetic Data Generation

@ We first implemented a synthetic data generator called
Datasynthesizer, which is based on a method called PrivBayes that
was used in the NIST PSCR Differential Privacy Synthetic Data
Challenge in 2019

@ The method is based on Bayesian Networks, a probablistic model that
represents the distribution of the variables but also the dependencies
between them.

@ The algorithm first generates a Bayesian Network based on the
variables and creates a probability distribution

@ Then it generates the synthetic data using the probability distribution.

@ Noise is injected in both processes to satisify DP.
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Bayesian Network

Fig. 1. A Bayesian network Np over five attributes.

Figure: Taken from PrivBayes. Zhang J. et.al (2017)
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Variables to Consider

@ ¢, the amount of data privacy budget we have. The more budget, the
better the synthetic data since we are injecting less noise
@ 3, How much privacy to allocate to building the network vs generation

e Maximum degree of the network. Bigger/complex networks could
better describe the relationships between variables, but the trade-off
is that more noise is injected to the network as a whole to ensure DP
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Marginal Distributions of Head Age based on ¢(8 = 0.3)
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@ The main study that we did analysis on is the "New Estimates of the
Sandwich Generation in the 2013 Panel Study of Income Dynamics”
by Friedman, et.al (2014).

@ The study looks at the transfer of wealth and time in people who
have parents and children.

@ We replicated four of the tables in the study based on the original
data, then compared to results to when we used DP synthetic data.

@ We examined how changing the variables affected the effectiveness of
the analysis.
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Table 1 in the Sandwich Study

Table 1. Percent of Women and Men with Children and Parents, by Age (PSID 2013 Family Roster & Transfer Module)

Women Men

Overall 35-49 50-64 65-75 Overall 35-49 50-64 65-75
Both 44.9 41.6 59.0 17.7 44.3 31.0%** 61.91 32.1%%*
Child(ren) Only 26.9 3.6 28.7 75.7 20.9%** 2.7 21.9%** 61.6%**
Parent or In-law only 24.6 52.9 8.0 0.9 31.1%** 63.8%** 11.7** 1.4
None 3.6 1.9 4.4 57 3.8 25 4.5 5.0
Married (%) 67.6 70.5 67.7 60.9 77.0%** 75.4%% 77.3%%% 80.3%**
N 4,688 2,106 2,008 574 3,952 1,768 1,658 526

Note: Weighted using 2013 individual weights. Unweighted N.
tp <105 *p < .05; **p < 0.01, ***p < 0.001.
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Table Distribution Comparisons: Male Proportions
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Table Distribution Comparisons: Male Proportions Mean

Average Error
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Distribution Comparisons: Male Counts
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Distribution Comparisons: Female Proportions
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Distribution Comparisons: Female Mean Average Erro

Total Count Difference for each Distribution For Females
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Distribution Comparisons: Female Counts
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Distribution Comparisons: Female Counts Total Difference

Total Count Difference for each Distribution For Females
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/ score comparison

e ol Ao 3549
= gnal == apaion=2 = epsion=1 s epsion=05 —gn - opskn=2  mm epuion=1 = epsion=05

§o --I- III I m |III II
.

z

100
-
o Crkdon) Only ParantinLow Ony Netar Chden)Onty et Law Ony Nestar
Ago 5084 Ao 6575
o
(STl e Teeia= 10 o =1 L T3] —gns = opsin=2  mm apuion=1 = epakon=05

z

.
.
§ | | {, Ii_m L
~ -
.

on Chiden)Only ParotinLow Ony Noier s Chidgen)Onty Parntin Law Oy Nosber

Thomas Chen (DIMACS June 2024) Differential Privacy in Applied Social Science July 18, 20



Future Goals

@ Look at how data synthesis works with longitudinal studies
@ Comparing these results to another DP synthetic data Generators

@ Examining how other kinds of statistical analyses fare under these
synthetic data generators.
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