
Palande et al.: IEEE TRANSACTIONS and JOURNALS

.

VOLUME 4, 2016 1



Date of publication xxxx xx, xxxx, date of current version July 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.DOI

Co-evolution of Opinion and Signed
Network Dynamics in Real-World
Scenarios
SOHAM S. PALANDE1, JIE GAO2.
1Department of Computer Science, Rutgers University, New Brunswick, NJ 08854 USA (e-mail: ssp215@scarletmail.rutgers.edu)
2Department of Computer Science, Rutgers University, New Brunswick, NJ 08854 USA (e-mail: jg1555@cs.rutgers.edu)

Corresponding author: Soham S. Palande (e-mail: ssp215@scarletmail.rutgers.edu).

This work was carried out while Soham Palande, the author, was a participant in the 2021 DIMACS REU program at Rutgers University,
supported by NSF HDR TRIPODS award CCF-1934924.

ABSTRACT
With the pervasion of social media in modern society, evolution of opinions and network dynamics in
social networks have gained special interest from industry, academia and governments. The study of
opinion and network dynamics has several applications- social sciences, behavioral economics, game theory,
decentralized robot swarms in smart cities to name a few- with consequential implications. Adversarial
attacks through fake news and troll bots are increasingly common and there is a need for a rigorous
understanding of their impact on individuals and the social networks. In this paper, we study opinion
and network dynamics and characterize social networks at their limit states extending recent work in co-
evolution of signed networks and opinions to better represent the real world. We build upon intuition of the
real world, in which individuals hold multiple opinions on a range of issues for example- healthcare, gun
control and seek to better represent complex relationships/social ties between individuals in a network. We
formulate these intuitions mathematically and incorporate them in a co-evolution model which combines
signed network dynamics based on structural theory and opinion dynamics. We conduct a comprehensive
study through numerous simulations and validate the model on the benchmark Zachary’s Karate Club dataset
to achieve 100% accuracy. We mathematically address divergence of social ties to infinity, which in the
real world would translate to limitless polarization, by introducing normalization which keeps the relative
magnitude of the social ties in tact but prevents divergence.

INDEX TERMS Computational Social Science, Information Warfare, Networks, Network Dynamics,
Opinion Dynamics, Robot Swarms, Social Networks, Social Science

I. INTRODUCTION

MODERN technology has revolutionized the way we
consume information and interact with people around

the world. Today, social media platforms allow for near
instantaneous exchange of information and opinions to vast
audiences through the click of a button- a luxury enjoyed
previously only by traditional media outlets. As a result,
the information that we are exposed to has risen by orders
of magnitude. Yet, just 65.6% of the world has access to
internet, and with this number expected to grow by the day,
the interaction between individuals and consumption of in-
formation is only expected to increase. While the information
that we are subject to has vastly increased, our cognitive pro-
cessing capabilities have remained largely unchanged leading

to an information overload and the consequent distortion of
facts and ultimately to the erosion of absolute truth. It thus
becomes necessary to better understand the social processes
that underlie the complex interactions and consequent ex-
change of opinions/information and its side effects.

Recent events in the political domain further necessitate
the need to gain a comprehensive understanding of the social
dynamics underlying the social networks which may be ex-
ploited by malign actors (both internal and external) thereby
posing a threat to national security. For example, the rise
of troll armies/bots on almost every social media platform
and the planting of fake news requires a comprehensive
evaluation of their impact on manipulating crowd behavior.
Twitter disclosed in 2019 that external bots had made a
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coordinated effort to sow political discord in Hong Kong.
U.S. Special Counsel’s office argues Russian IRA (Internet
Research Agency) made a strategic effort to sow discord in
the U.S. political system. Recent work by Gaitonde et al. [1]
investigates the ability of an adversary to artificially induce
disagreement/discord and qualitatively describes structural
properties of networks which are susceptible to and resilient
against adversarial attacks. They also consider the uncou-
pling of social dynamics processes where the opinion dy-
namics take place on a network (eg. social media platforms)
that is different from the network on which disagreement is
measured (eg. ’real-world connections’).

Understanding the processes underlying crowd behavior
and their manipulation also has applications in engineer-
ing problems of modern smart cities. Robot swarms are
expected to play a central role in the smart cities of the
future with innumerable applications in optimizing- garbage
collection/disposal, precision farming, search operations etc.
as shown in A. L. Alfeo et al. [2]. With larger and larger
robot swarms, it becomes computationally efficient to have
decentralized control i.e. the robots "communicate" with each
other independently without global coordination (analogous
to human interaction) but exhibit globally desirable behav-
ior (eg. avoid splitting of the swarm). This is analogous
to understanding the social processes that lead to polariza-
tion/harmony in humans.

With the vast amount of information that individuals are
subject to, opinions of individuals are influenced to a large
extent by their social networks and the strength of the ties
in the network, in turn, are influenced by the interactions of
individuals holding various opinions.

Most work in this area has focused on models of opinion
dynamics or on models of network dynamics but not on
models of both opinion and network dynamics. In this paper
we extend a co-evolution model (of both opinion and network
dynamics) as presented in Wang et al. [3] to better reflect real
world settings and validate it on real world data...

II. BACKGROUND AND RELATED WORKS
Opinion dynamics is the interplay of between opinion forma-
tion and the network structure of interactions. Dynamics of
opinions and social ties (network dynamics) have been ex-
tensively studied and several mathematical models proposed
that aim to capture wholly or partially the complex social
processes taking place.

Formation of community structures is a widely observed
phenomena in social networks and have been investigated
in theory and real world platforms [4,5,6]. In this paper, we
extend the the model in [3] and validate findings that show
how network and opinion evolution leads to emergence of
community structure.

To provide context regarding previous models, we define a
network of individuals represented as an adjacency matrix
W with each entry wij ∈ R representing the strength of
the social tie/influence between individual i and j. We also

consider an opinion vector v with each entry vi representing
the opinion of individual i.

One of the first models of opinion dynamics is the French
Degroot model which considers a discrete time process of
opinion for a group of n individuals. The elements of the
adjacency matrix or social ties, wij are non-negative. The
opinions are updated according to

V (t+ 1) = WV (t), where W is a stochastic matrix

Abelson’s model [10] defines the analogous continuous-
time model.

The Friedkin-Johnson model, in addition to having W
and V as defined above, where W is a stochastic matrix,
considers a diagonal influence matrix Λ such that λi ∈ [0, 1]
and λi defines the susceptibility of an individual to social
influence.

In most cases, these models consider a constant weight
matrix W and even those models in which W is time varying
such as Hegselmann-Krause [11, 12], Deffuant [13] and W
co-evolves with the opinions W contains only non-negative
entries representing positive and neutral/no influence be-
tween individuals. So, any interaction between individuals in
these networks moves their opinions closer to each other.

Networks with positive and negative ties- signed networks
have been extensively studied as well. A fundamental char-
acterization of a signed network is whether or not it exhibits
structural balance.

Some recent work presents a co-evolving model, Altafini
[14] in which the weight matrix W is fixed but contains
positive and negative values. Still, the weight matrix is in-
dependent of the opinion changes. In A Proskornikov, M Cao
et al [15, 16], the network/social ties vary with time, but
the evolution of the network is still independent of opinion
changes.

Wang et al. in [3] present a co-evolution model in which
wij does not need to be non-negative and takes values in
(−∞,+∞). The model is presented in the next section and
combines signed network dynamics using structural balance
theory [8], described in the next section, and classical opinion
dynamics in which the network dynamics are influence by the
opinion dynamics.

We extend the co-evolution model which combines the
dynamics of signed networks shown in [3] to better reflect
intuitions of individuals holding multiple opinions and ad-
dress limitless polarization/harmony seen in the simulations
using normalization to better reflect the real world.

III. DESIGN AND MODEL
We first discuss some required preliminaries to discuss the
model. We then introduce the discrete-time co-evolution
model as presented in Wang et al. [3] and then discuss our
additions to the model.
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A. PRELIMINARIES
We define a network of individuals represented as an adja-
cency matrix W with each entry wij ∈ R representing the
strength of the social tie/influence between individual i and
j. A positive value would indicate that i and j and friends
while a negative value would indicate that they are hostile.
A value of 0 for wij means that individuals i and j are not
related. We also consider an opinion vector v with each entry
vi ∈ [−1, 1] representing the opinion of individual i. Each
vertex i in the network has an opinion vi and weight wij

between individual i and j both of which are updated at each
time step representing the evolution of the system. The goal
is to characterize the states of the dynamic system at the
limit i.e. whether there is emergence of community structure-
which is indicated by partitioning of the network into two
groups with positive edges inside each group and negative
edges across- and structural balance.

The extreme case of community structure is indicated by
structural balance [8] in networks where there are two types
of social ties such as friendship and hostility represented by
positive and negative values respectively. In social networks,
only two types of triangles are stable- triangles in which
all the ties are positive (indicating everyone is friends) and
triangle in which there are two negative edges and one
positive edge depicting that the enemy of your enemy is your
friend (Fig 1). Over time, unstable triangles break and change
into stable ones throughout the network. The stable network
theory states that a network in which all the triangles are
stable must have a partition of nodes into two camps- thus
having community structure.

FIGURE 1. The two triangles on the right indicate structural balance

B. CO-EVOLUTION MODEL
Suppose that there are n individuals in the network each hav-
ing their own opinion. This may represent their opinion on a
certain issue such as for/against gun control corresponding to
1 and −1 respectively. The opinion of all the individuals is
the vector v ∈ Rn. We also have an initial influence matrix
W in which wij ∈ R represents the relationship between
individuals i and j. W is assumed to be a symmetric ma-
trix indicating an undirected network. The dynamic system
dictating the evolution of the social ties/weight matrix W
and the opinions/opinion vector v in the social network as
presented in [3] is:

V (t+ 1) = V (t) +W (t)V (t) (1)

W (t+ 1) = W (t) + V (t)V (t)T (2)

In equation (1), the opinion of the individual changes
by the weighted sum of the opinions of its neighbors with
coefficients from the weight matrix W . In equation (2), the
weights or the strength of the social ties between individuals
i and j changes by the difference in opinions of individuals i
and j.

C. DESIGN
In the co-evolution model in [3], the authors define the co-
evolution model such that each individual i in the network
has a single opinion vi ∈ R. However, in reality individuals
hold opinions for a wide variety of topics while agreeing and
disagreeing over different topics. For example an individual
may support ’gun control’ and support ’free healthcare for
all’ whereas another individual may support ’gun control’
but be against ’free healthcare for all’. Modelling multidi-
mensional opinions and their complex interactions is more
representative of the real world. To address this, we propose
two ways to capture the multiple opinions that an individual
may hold within the context of the model:

1) The weight matrix represents the influence between
two individuals with a single real value i.e. W is a
square matrix with each entry a real number while the
opinion vector of the entire network v is such that each
entry vi in v is an element of R1x2 representing the two
opinion and each individual holds on different topics.

2) The weight matrix represents the influence between
two individuals with an m x m matrix (assuming each
individual has m opinions). Here, each entry of the
square matrix W is an m x m matrix. This allows us
to model the interactions between opinions and the
influence exerted by individuals on specific opinions
as opposed to the just having a single real value for the
influence between to individuals.

In case 2 as described above, each entry wij of the weight
matrix representing the social tie between two individuals is
a mxm matrix which can capture the interactions between
different opinions of two individuals. As described above
two individuals who agree on certain issues while differing
on others are likely to have a complex relationship and their
social relationship may not be adequately capture by a single
real number. Furthermore, this disagreement/agreement of
opinions on certain issues is likely to impact the opinion
evolution in more complex ways as well.

To see this, consider the example of two individuals A and
B. Suppose A strongly supports gun control i.e. va1

= 1
and B is unsure but is somewhat against gun control i.e.
vb1 = −0.15. Now suppose both A and B are strongly
against free healthcare, i.e. va2 = −1 and vb2 = −1.
Suppose A and B are relatively friendly. Then using the
co-evolution model, the weight/social tie between A and B
could get reinforced considering there is strong agreement
betweenA andB on free healthcare which in turn could sway
A’s weak opinion on gun control towards that of B’s. Or
perhaps, if A and B have a more hostile relationship on the

4 VOLUME 4, 2016



Palande et al.: IEEE TRANSACTIONS and JOURNALS

topic of gun control, it could cause their entire relationship
to turn hostile as the system evolves. Perhaps they may find
middle ground while remaining hostile regarding issues of
disagreement and friendly regarding issue of agreement. By
using a matrix to capture the relationship between individuals
in a network as opposed to real numbers, we hope to capture
these complex interactions between opinions of individuals
on different topics which is more representative of the real
world.

The simulations of the co-evolution model presented in
[3] (Fig 2) show that in all cases the values of the weight
matrix W and the magnitude of the elements of the opinion
vector v diverge to positive and negative infinity. What does
this translate to in the real world? Does it mean that that
societies/networks head towards complete partitioning into
two camps which are then completely isolated? To better
understand the behavior of the co-evolution model at limit
points, we evaluate the co-evolution model under various
normalization constraints i.e. the weight matrix W and the
opinion vector v are normalized at each timestep. Normaliza-
tion at each timestep leaves the relative values of the weights
wij in W and opinions vi in v unchanged while being
bounded so as not to diverge to positive/negative infinity. We
use various normalization techniques- Frobenius/Euclidean
norm, infinity norm, 1-norm, 2-norm, dividing by the abso-
lute maximum of the matrix/vector. The results for all the
normalization techniques were consistent and there was no
discernible difference.

IV. RESULTS AND DISCUSSION
We perform simulations for networks exhibiting various
properties. For the multidimensional opinions setting i.e.
where each individual holds more than one opinion corre-
sponding to different topics, we limit the number of opinions
an individual can hold to 2 for visualization purposes. W
is weight matrix representing the social tie between two
individuals and v is the vector representing the opinions of
the individuals in the network.

A. CASE 1
These are the experiments for Case 1 as described in the
Design subsection of the previous section. Here,

W =


w11 w12 . . . w1n

w21
. . .

...
. . .

wn1 . . . . . . wnn

, where wij ∈ R

V =


v1
v2
...
vn

, where vi ∈ R1x2 and vi1 , vi2 ∈ [-1,1]

W is initialized to a random symmetric matrix repre-
senting an undirected graph and v is initialized randomly
following the dimensions and constraints described above.

The results are shown in Figure 3. Here, the elements of
the weight matrix or the social ties in the network diverge
to positive and negative infinity through time. Similarly,
the opinion vectors for each individual also diverge. This
network contains 10 individuals for the sake of clarity in the
visualization but similar results are observed for networks
with higher individuals.

We then run the same network of 10 individuals under nor-
malization constraints. The weight matrix and opinion vector
are normalized by dividing by the absolution maximum of the
weight matrix and opinion vector respectively. This prevents
the values from going to infinity but does not change their
relative magnitudes. The results are shown in Figure 4.

We see that the values of the weight matrix, which other-
wise diverge to positive/negative infinity converge due to nor-
malization. The opinion vector for each individual however
oscillates as time goes on. The red vectors indicate the vector
point was in the first quadrant and the blue vectors indicate
the vector point was in the third quadrant of the euclidean
space at the time the simulation was stopped. The oscillation
of the opinion vectors is an interesting observation as this
would correspond to a real world system in which community
structure does not emerge and the opinions of individuals
continue to vary through all possible range of values. We also
run a simulation in which the weight matrix is normalized as
described above at each iteration but the opinion vector is not.
The result (Figure 4) shows that the elements of the weight
matrix converge but the opinion vectors for each individual
diverge indicating that the social ties remain constant while
there is community formation with regards to opinions held
by the individuals.

B. CASE 2

These are the experiments for Case 2 as described in the
Design subsection of the previous section. Here,

W =


w11 w12 . . . w1n

w21
. . .

...
. . .

wn1 . . . . . . wnn

, where wij ∈ R2x2

v =


v1
v2
...
vn

, where vi ∈ R2x1 and vi1 , vi2 ∈ [-1,1]

W is initialized to a random symmetric matrix repre-
senting an undirected graph and v is initialized randomly
following the dimensions and constraints described above.
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FIGURE 2. Results from [3]. The magnitudes of the elements of the weight matrix and opinion vector go to positive/negative infinity

FIGURE 3. The magnitudes of the elements of the weight matrix (top) diverge
to positive and negative infinity. The opinion vector of each individual diverge
(bottom)

The results are shown in Figure 5. Here, the elements of
the weight matrix or the social ties in the network diverge
to positive and negative infinity through time but are not
shown in the visualization since it the ties are represented by
a matrix. Similarly, the opinion vectors for each individual
also diverge. This time however, the opinion vectors go to
infinity in multiple directions as opposed to 2 in Case 1.
This model thus captures more complex interactions between
individuals allowing them to hold various combinations and
degrees of opinions on the two issues. This network contains
7 individuals for the sake of clarity in the visualization
but similar results are observed for networks with higher
individuals.

We then run the same network of 7 individuals under nor-
malization constraints. The weight matrix and opinion vector

FIGURE 4. The magnitudes of the elements of the weight matrix (top)
converge due to normalization. The opinion vector of each individual oscillates
as time goes on (middle). The initial opinion vector for each individual is
denoted by the ’+’ sign. (Bottom) shows the divergence of the opinion vectors
when the weight matrix is normalized at each iteration but the opinion vector is
not.
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FIGURE 5. The figure shows 3 different simulations (Top, Middle, Bottom)

are normalized by dividing by the absolution maximum of the
weight matrix and opinion vector respectively. This prevents
the values from going to infinity but does not change their
relative magnitudes. The results are shown in Figure 6.

Similar to the results in case 1, we see that the opinion
vectors of the individuals oscillate as time goes on.

C. REAL WORLD DATA
We validate our extension of the co-evolution model using the
benchmark Zachary’s Karate Club dataset [9]. In this study,
the author witnesses the breakup of 34 members of a karate
club over the span of two years into two factions. the author
closely documents the links of external interactions between
members of the club i.e. interactions outside the club.

Conflict arose between two members of the club- node 0
and node 33 as shown in Figure 8 leading to a split among
the club members.

To model this, we set

FIGURE 6. The figure shows 2 different simulations (Top, Bottom) for Case 2
with normalization. The dots on the lines denote the starting point of the
vectors on in Euclidean space

v =


[1 1]
[0 0]
...
[0 0]

[−1 −1]


Since node 0 and node 33 are the nodes between which

the conflict first arose, we set them to have opinion vectors
v0 = [1 1] and v1 = [−1 − 1] to indicate complete
disagreement on two issues. Every other nodes i is initialized
to be indifferent and defined vi = [0 0].

The weight matrix W , is set according to the adjacency
matrix of the graph where wij = 1 if two individuals
interacted outside of the club and 0 otherwise.

The systems evolves according to the co-evolution model.
We normalize the weight matrix at each iteration of the co-
evolution model. The results are shown in Figure 7.

We see that community structure emerges- the nodes
split into two camps as indicated by the opinion vectors
diverge in opposite directions. Since the weight matrix is
normalized, we see that the social ties converge but the
opinions remain polarized as time goes on. The resulting
community formation correctly classifies each node in agree-
ment with the ground truth i.e. the actual split of the members
as documented by Zachary. The result show that the co-
evolution model with multidimensional opinion vectors and
normalization is to some degree representative of the real
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FIGURE 7. Graph of interactions between members of the Karate club as
documented by Zachary. Red and Green nodes indicate the split into two
factions

FIGURE 8. Graph of interactions between members of the Karate club as
documented by Zachary

world while being more representative of our understanding
of individuals holding various opinions for a range of topics.

In all the simulations for Case 1, Case 2 and Zachary’s
Karate Club, structural balance was observed. It is important
to note however, that in the simulations for Case 2, the
definition of structural balance is unclear. Since each entry in
the weight matrix wij ∈ R2x2, which requires a new defini-
tion of structural balance. We consider this interesting future
work. Regardless, even in Case 2, the structural balance was
seen in W ∈ Rnxn when evaluated by considering W as
W ∈ R2nx2n- since each entry wij ∈ R2x2.

V. CONCLUSION AND FUTURE WORK
In this paper, we extend and evaluate the co-evolution model
proposed by Wang et al [3]. In [3], the adjacency matrix

corresponding to a network of individualsW , captures the re-
lationship between two individuals with a single real number.
Since, in the real world, individuals hold multiple opinions
on various topics, they have more complex relationships with
those around them. Individuals may agree on certain issues
while disagreeing on others and these complex interactions
between individuals may shape their opinions and their re-
lationship (social ties) in different ways. To incorporate this
intuitive real world notion, we propose representing the rela-
tionship between to individuals by a 2x2 matrix as opposed
to a real number. Similarly, instead of individuals having
opinions that are real numbers, we modify the opinions to
be vectors which capture individuals’ opinions on different
issues.

The results from past work [3], show that when a net-
work evolves in accordance with the co-evolution model,
which is based on combining structural balance dynamics
and opinion dynamics, structural balance is observed at the
limit states and the magnitude of social ties and opinions
goes to positive/negative infinity. In the real world however,
this would mean limitless polarization and isolation between
two communities. So, we propose to normalize the matrix of
social ties W and the opinion vector of the individuals in the
network at each iteration of the co-evolution model.

Our results are similar to those in [3] and structural balance
is observed in all cases except Case 2 as described in Results
section which is somewhat undefined. The results show po-
larization/harmony/oscillation of the opinions of individuals
in a network while their social ties remain constant due to
normalization. The normalization of the weight matrix allows
for the system to evolve in a similar manner since the relative
values of the social ties remain unchanged while preventing
the ties of heading to infinity.

The scope for future work in this area remains strong
as such models will find applications in several areas such
as robot swarm control, behavioral economics, game theory
and more pressing issues relating to tech policy, information
warfare and adversarial manipulation in social networks.

Characterising structural balance for the weight matrix for
higher dimensional cases remains an open area. Further, the
co-evolution model requires rigorous analysis in the case of
directed graphs which are still more representative of the real
world. A comprehensive evaluation of the initial states of the
social tie/weight matrix that lead to harmony/polarization or
convergence is needed.

.
Appendixes, if needed, appear before the acknowledg-

ment.
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