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Notation and Definitions

• A lattice L ∼= Z2 can be thought of as a coordinate grid

• An affine transformation ϕ : L→ Z is of the form

ϕ(v) = Av + b

• The ”linear part” of ϕ is ϕo(v) = Av
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Mutation Data

• A mutation data is a pair (ϕ, h) where ϕ : L→ Z is a

nonconstant affine transformation, and h is an element of the

lattice and in the kernel of ϕo .

• We define the mutation associated to (ϕ, h) by

mut(ϕ,h) : x` 7→ x`hϕ(`)
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Example

x

y
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1
ϕ = 0

ϕ = −1

ϕ = −2

Here we let ϕ = x − 2 (the

height function minus two)

Thus, any polynomial in

just x will be in the kernel

of the linear part (x)

Choose h = 1 + x , and

notice

1+3x+3x2+x3 = (1+x)3

2y + 2xy = 2y(1 + x)
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After first mutation

1 1

2

1

ϕ = −2
ϕ = 0

For our next mutation, we

are free to choose any

other affine

transformation. We let

ϕ = 2y − 2

Then, choose h = 1 + y ,

and notice

1 + 2y + y2 = (1 + y)2
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After second mutation

1 1

Notice we are left with the

polynomial 1 + x . From

here, it is easy to reduce

to a constant
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0-Mutable

• x` is 0-mutable for all elements ` of the lattice

• x`1 + x`2 is 0-mutable for all elements l1, l2 of the lattice

where `1 − `2 is primitive

• Let f1, f2 be any polynomials of two variables. If they are

0-mutable, then so is f1f2.

• Let f be a polynomial of two variables. If f is 0-mutable, then

so is any mutation of f.
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The Lattice Geometry of Polynomials
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To any polynomial we can

associate its convex hull,

the smallest convex

polygon containing its

lattice points

Natural to ask whether or

not the geometry of the

convex hull affects

k −mutability
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Questions to Explore

1. What is the appropriate definition of k-mutable?

• if equivalent to a polynomial with k + 1 terms?

2. How many equivalence classes of k −mutable polynomials are

there?

3. How can we determine whether or not a k −mutable

polynomial can actually be reduced further?

4. Connections to cluster algebras (Structures that generalize the

notion of mutation)
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