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Preliminary Definitions

• A lattice N ∼= Z2 can be thought of as a coordinate grid

• An affine transformation ϕ : N → Z is of the form

ϕ(v) = Av + b

• The “linear part” of ϕ is ϕo(v) = Av

• Given a set of lattice points, their convex hull is the smallest

convex polygon that contains all of the points.

The definitions on the following frames go back to Fomin and

Zelevinsky in their work, “Cluster Algebras I, Foundations”
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Definition of Mutation

• A mutation data is a pair (ϕ, h) where ϕ : N → Z is a

nonconstant affine transformation, and h is an element of the

lattice and in the kernel of ϕo . h must also be of the form

1 + xnym with n,m ∈ Z
• Given a mutation datum (ϕ, h) and f ∈ C[N], write

f =
∑
k∈Z

fk where fk ∈ C[(ϕ = k) ∩ N].

• We say that f is (ϕ, h)-mutable if for all k < 0 we have that

h−k divides fk .

• If f is (ϕ, h)-mutable, then the mutation of f , with respect to

this mutation datum is the polynomial

mut(ϕ,h)f =
∑
k∈Z

hk fk .
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Definition of 0-mutable

Let N be an affine lattice of rank 2. We define the set of

0-mutable polynomials on N in the following way:

• A monomial is 0-mutable

• The product f = f1f2 is 0-mutable if and only if both factors,

f1, f2 are 0-mutable.

• If f is 0-mutable, then every mutation of f is 0-mutable.
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Example

x

y

1 3 3 1

2 2

1
ϕ = 0

ϕ = −1

ϕ = −2

This is the polynomial

1 + 3x + 3x2 + x3 +

2y + 2xy + y2

Here we let ϕ = y − 2 (the

height function minus two)

Thus, any polynomial in

just x will be in the kernel

of the linear part (x)

Choose h = 1 + x , and

notice

1+3x+3x2+x3 = (1+x)3

2y + 2xy = 2y(1 + x)
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Example

x

y

1 1

2

1

This is the polynomial

1 + x + 2y + y2

This is the polynomial we

obtain from the previous

mutation, and notice we

can continue to reduce

(possibly by choosing an

affine function that has

vertical level sets)
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Code

Early in the summer, I began work on a code project to help us run

over examples of mutations. The functionality includes

1. random mutations

2. convex hull illustration

3. reduction
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Code continued...

The reduction deserves special mention, as the algorithm may be

enlightening for future work. The following is performed for each

side of the polynomial’s convex hull.

1. Find the direction determined by the side

2. Group the terms in the polynomial by which parallel line with

this given direction they lie on

3. Factor all of the polynomials determined by these groups

4. Check if factors are shared in a way that would allow for a

viable mutation

Note, we can find always find at least one mutation for each side,

and thus actually infinitely many, but we only keep the ”minimal”

mutation
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Code Continued...

Once reduction was working, we were close to finding an algorithm

to efficiently check if a polynomial was 0-mutable. As long as the a

0-mutable polynomial never required a mutation that strictly

increased the number of terms to mutate down to a monomial, we

would be done.

Unfortunately, a long search found a counterexample, given by the

equation

1 + 3x + 3x2 + x3 + y + 3xy + 4x2y + x3y + x2y2
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Rigid Maximally Mutable Polynomials

During our project, Alessio Corti, Matej Philip, and Andrea

Petracci published results in their paper ”Mirror Symmetry and

Smoothing Gorenstein Toric Affine 3-Folds” related to what we

were working on. In it they define ”rigid maximally mutable”

polynomials. Let f be a polynomial and let S be a set of mutation

data. We define

1. ψ(f ) = {Mutation data s = (φ, h)|f is s-mutable}
2. L(S) = {f |∀s ∈ S , f is s-mutable}

A laurent polynomial such that L(ψ(f )) = {λf |λ ∈ C} is called

rigidly maximally mutable.

The paper used a very high level proof to show that 0-mutable and

RMM polynomials are equivalent, but I found a simple

combinatorial proof showing all 0-mutable polynomials are RMM
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Some Noteworthy Results

• ψ(f ) for any polynomial is infinite, and will always carve out a

well-defined convex hull in the plane

• Reducible polynomials that are 0-mutable need not be rigid

maximally mutable

• Rigid maximally mutable polynomials must have sides that are

completely reducible

12



Mutating Polygons

Some Initial Definitions:

• Lattice N, its dual M = Hom(N,Z)

• Fano Polygon: A convex lattice polygon such that the origin

lies in the strict interior, and the vertices are primitive lattice

vectors.

(-1,-1)

(1,0)

(0,1)
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Combinatorial Mutation of Lattice Polygons

Akhtar et al., Mirror Symmetry and the Classification of Orbifold

del Pezzo Surfaces

• Let P ⊂ NQ be a lattice polygon. Choose an orientation of N.

• A mutation data for P, (h, f ) is a choice of primitive vectors
h ∈ M and f ∈ h⊥ ⊂ N satisfying the following conditions:

• The vertices of P are labeled ρ1, ρ2, · · · counterclockwise, such

that h(ρ1) = hmax .

• There is an edge Ei = [ρi , ρi+1] such that

h(ρi ) = h(ρi+1) = hmin.

• ρi+1 − ρi = wf where w ≥ −hmin is an integer.
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Example

x

y

ρ1

ρ2

ρ3

Consider the polygon

conv((−1,−1), (1, 0), (0, 1)) and

the mutation data (h, f ) where

h(x , y) = −x − y and

f = (−1, 1).

Then, we have that

hmax = h(ρ1) = 2,

hmin = h(ρ2) = h(ρ3) = −1, and

i = 2.
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Two Cases

Mutating P with respect to the mutation data (h, f ):

• Case 1: P has m vertices, ρ1, · · · , ρm, and ρ1 is the unique

maximum for h on P.

ρ′j =


ρj 1 ≤ j ≤ i

ρj + h(ρj)f i < j ≤ m

ρ1 + hmax f j = m + 1

• Case 2: P has m+1 vertices, ρ1, · · · , ρm+1, and

h(ρ1) = h(ρm+1) = hmax .

ρ′j =


ρj 1 ≤ j ≤ i

ρj + h(ρj)f i < j ≤ m

ρm+1 + hmax f j = m + 1
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Example continued

Since we are in Case 1 the mutation is given by

ρ′j =


ρj 1 ≤ j ≤ 2

ρj + h(ρj)f j = 3

ρ1 + 2f j = 4.

This yields

the polygon

on the right. x

y

ρ′1

ρ′2

ρ′4
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Another Definition

Akhtar, Coates, Galkin, Kasprzyk, Minkowski Polynomials and

Mutations

• Let P ⊂ NQ be a lattice polygon with vertices V(P), and let

w ∈ M be primitive.

• For each height h ∈ Z, w defines a hyperplane

Hw ,h := {x ∈ NQ : w(x) = h}.
• Let wh(P) := conv(Hw ,h ∩ P ∩ N).

• The lattice polygon F ⊂ NQ is a factor of P with respect to w

if w(F ) = 0, and if for every height hmin ≤ h < 0 there exists

a lattice polygon Gh ⊂ NQ satisfying

Hw ,h ∩ V(P) ⊆ Gh + (−h)F ⊆ wh(P).
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Example Revisited

x

y

Consider the polygon P =

conv((−1,−1), (1, 0), (0, 1)) and

the mutation data (w ,F ) where

w(x , y) = −x − y and

F = conv((0, 0), (−1, 1)) is a

factor of P with associated

G−1 = {(1, 0)}.

19



Definition of Combinatorial Mutation

• The combinatorial mutation given by width vector w , factor

F , and polygons {Gh} is the convex lattice polygon

mut(P;w ,F )

= conv

 −1⋃
h=hmin

Gh ∪
hmax⋃
h=0

(wh(P) + hF )

 ⊂ NQ.
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Example Revisited continued

Mutating P with respect to w and F yields

mut(P;w ,F ) = conv

G−1 ∪
⋃

h=0,2

(wh(P) + hF )


= conv((1, 0), (−1,−1), (−3, 1)).

which is the same polygon we got when mutating with the previous

definition.
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Results

• Given a Fano polygon, applying either mutation gives the

same mutated polygon up to isomorphism.

• Thus, we can combine statements about the mutations from

both mentioned papers.

• Let N be a 2-dimensional lattice and g ∈ C[x , y ] a Laurent

polynomial in two variables such that the convex hull of g is a

Fano polygon P. Then, the set of the convex hulls up to

isomorphism of all possible mutations of g is finite.
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Future Work

If given the time, we would still like to explore the following

questions

• is reduction monotone in some other variable, like number of

sides of the convex hull?

• is there a simple combinatorial proof showing that any RMM

polynomial is 0-mutable?

• what is the relationship with cluster algebras?
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