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Burning process 

This graph can be burnt in 3 steps 
using marked sequence of vertex choices 
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Burning number 

Definition: Burning number of a graph G is the minimum number of burning 
steps required to burn a graph.  

Definition: Burning number of a graph G is the length of the shortest burning 
sequence.  

Definition: Burning number of a graph G is the size of minimum dominating 
set with increasing radius of dominance 
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Observation: Burning number of a path (or cycle) on n vertices is 𝑛 .  

Hypothesis: Burning number of any graph on n vertices is at most 𝑛 .  
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Simple upper bound 

1) Take a spanning tree of a graph 
2) Double all edges 
3) Find an Eulerian cycle 
4) Cycle has 2n-2 vertices 
5) Resulting cycle can now be burned 

same as on the previous slide using 
2𝑛 − 2  vertices 

 

Theorem: Burning number of any graph is at most 2𝑛 . 



Known upper bounds 

𝑏𝑛 𝐺 ≤
32

19

𝑛

1 − 𝜀
+
27

19𝜀
 

𝑏𝑛 𝐺 ≤ 𝑛 + 𝑛≥3 

𝑏𝑛 𝐺 ≤ 𝑛 + 𝑛2 +
1

4
+
1

2
 

𝑛≥3 is the number of vertices of degree at least 3 

𝑛2 is the number of vertices of degree 2 

for any  0 < 𝜀 < 1  
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