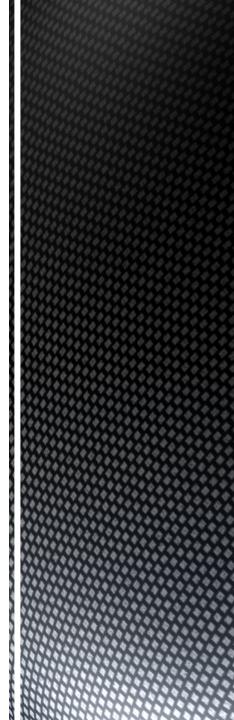
# **Burning Number**

Stanislav Kučera Jakub Pekárek

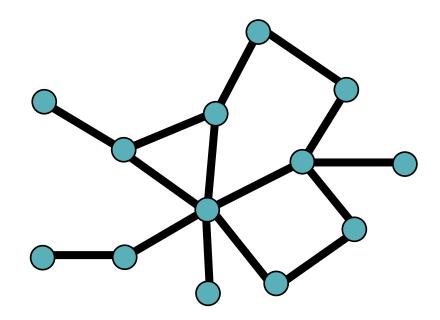
Computer Science Institute of Charles University in Prague



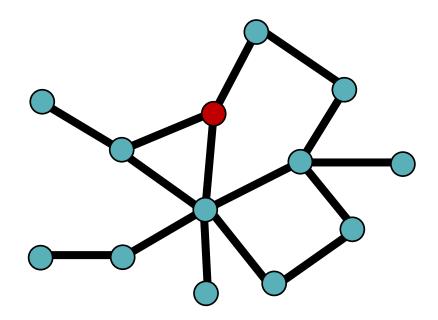


#### **Burning process**

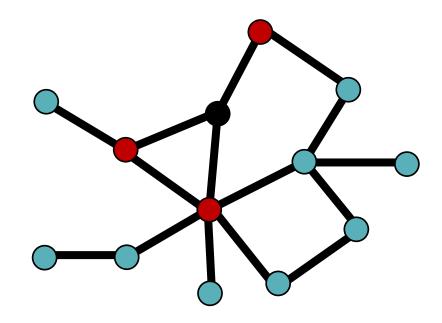
1) All vertices are unburnt



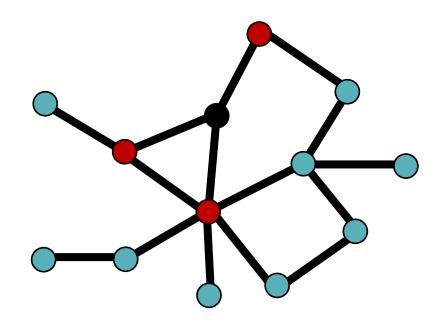
- 1) All vertices are unburnt
- 2) Choose a vertex to burn



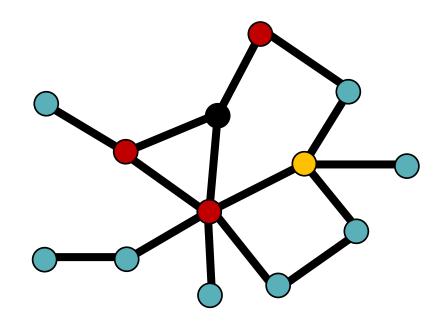
- 1) All vertices are unburnt
- 2) Choose a vertex to burn
- 3) Every burning vertex burns its neighbors



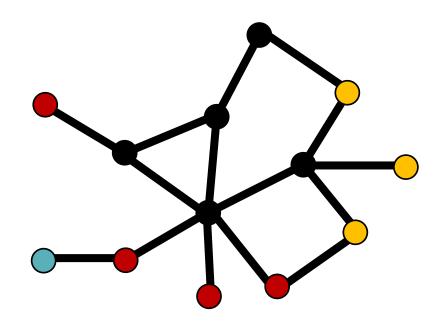
- 1) All vertices are unburnt
- 2) Choose a vertex to burn
- 3) Every burning vertex burns its neighbors
- 4) Repeat until all the vertices are burnt



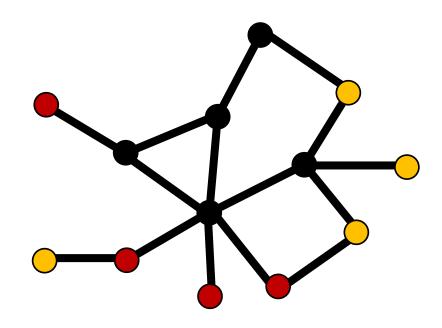
- 1) All vertices are unburnt
- 2) Choose a vertex to burn
- 3) Every burning vertex burns its neighbors
- 4) Repeat until all the vertices are burnt



- 1) All vertices are unburnt
- 2) Choose a vertex to burn
- 3) Every burning vertex burns its neighbors
- 4) Repeat until all the vertices are burnt

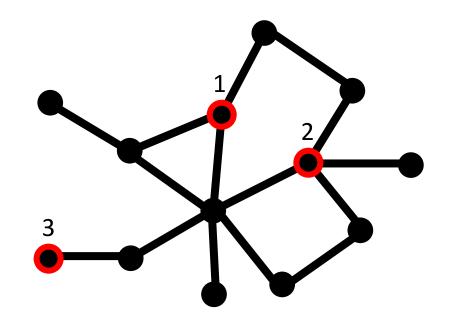


- 1) All vertices are unburnt
- 2) Choose a vertex to burn
- 3) Every burning vertex burns its neighbors
- 4) Repeat until all the vertices are burnt



#### **Burning process**

- 1) All vertices are unburnt
- 2) Choose a vertex to burn
- 3) Every burning vertex burns its neighbors
- 4) Repeat until all the vertices are burnt



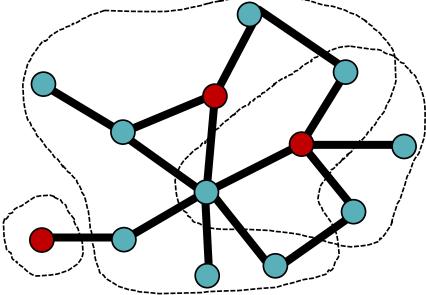
This graph can be burnt in 3 steps using marked sequence of vertex choices

# **Burning number**

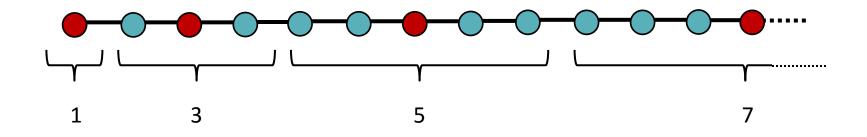
<u>Definition</u>: Burning number of a graph G is the minimum number of burning steps required to burn a graph.

<u>Definition</u>: Burning number of a graph G is the length of the shortest burning sequence.

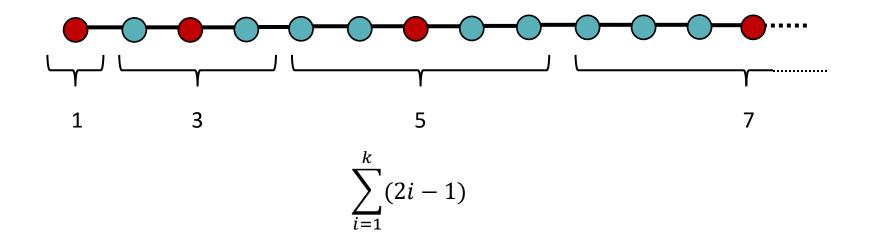
<u>Definition</u>: Burning number of a graph G is the size of minimum dominating set with increasing radius of dominance



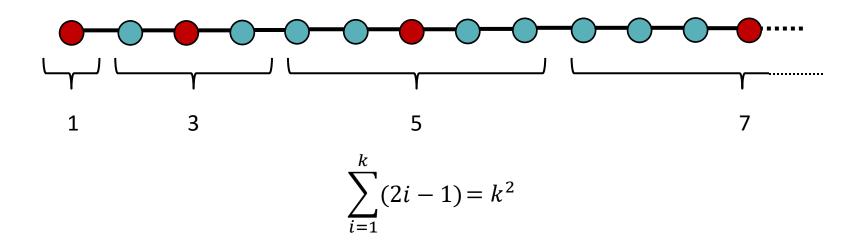
# Burning a path



# **Burning a path**



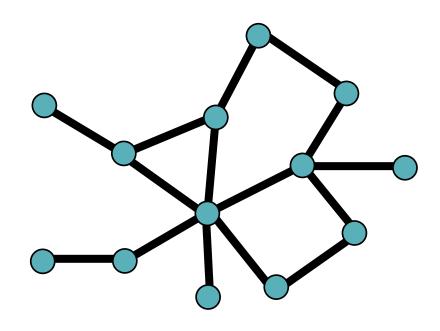
### **Burning a path**



<u>Observation</u>: Burning number of a path (or cycle) on n vertices is  $\lfloor \sqrt{n} \rfloor$ .

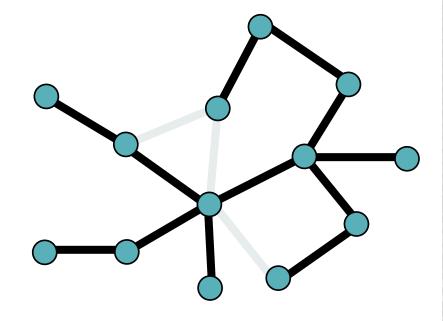
<u>Hypothesis</u>: Burning number of any graph on n vertices is at most  $\lfloor \sqrt{n} \rfloor$ .

<u>Theorem</u>: Burning number of any graph is at most  $\lfloor \sqrt{2n} \rfloor$ .



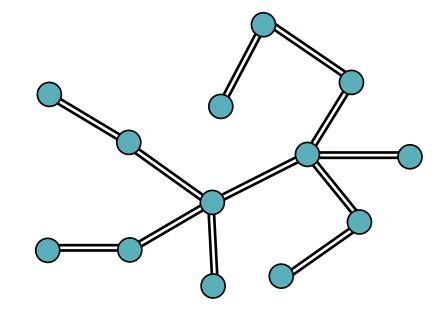
<u>Theorem</u>: Burning number of any graph is at most  $\lfloor \sqrt{2n} \rfloor$ .

1) Take a spanning tree of a graph



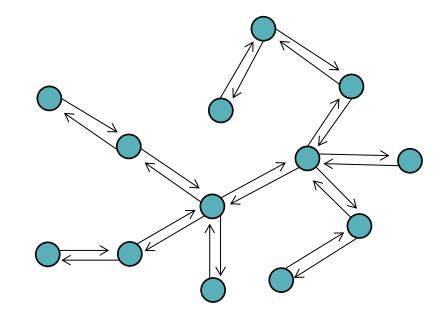
<u>Theorem</u>: Burning number of any graph is at most  $\lceil \sqrt{2n} \rceil$ .

- 1) Take a spanning tree of a graph
- 2) Double all edges



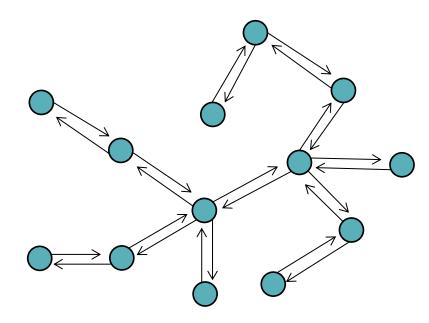
<u>Theorem</u>: Burning number of any graph is at most  $\left[\sqrt{2n}\right]$ .

- 1) Take a spanning tree of a graph
- 2) Double all edges
- 3) Find an Eulerian cycle
- 4) Cycle has 2n-2 vertices



<u>Theorem</u>: Burning number of any graph is at most  $\left[\sqrt{2n}\right]$ .

- 1) Take a spanning tree of a graph
- 2) Double all edges
- 3) Find an Eulerian cycle
- 4) Cycle has 2n-2 vertices
- 5) Resulting cycle can now be burned same as on the previous slide using  $\left[\sqrt{2n-2}\right]$  vertices



#### Known upper bounds

$$bn(G) \le \sqrt{\frac{32}{19} \frac{n}{1-\varepsilon}} + \sqrt{\frac{27}{19\varepsilon}}$$

for any  $0 < \varepsilon < 1$ 

 $bn(G) \le \left[\sqrt{n}\right] + n_{\ge 3}$ 

 $n_{\geq 3}$  is the number of vertices of degree at least 3

$$bn(G) \le \left[\sqrt{n+n_2+\frac{1}{4}+\frac{1}{2}}\right]$$

 $n_2$  is the number of vertices of degree 2

#### Sources

A. Bonato, J. Janssen, E. Roshanbin, Burning a graph is hard, Preprint 2015

A. Bonato, J. Janssen, E. Roshanbin, How to burn a graph, arXiv:1507.06524

S. Bessy and D. Rautenbach, Bounds, Approximation, and Hardness for the Burning Number, arXiv:1511.06023

### **Thank You**