Algorithms for Streaming Tournaments

Sahil Kuchlous
Mentor: Prantar Ghosh

Graph Streaming

- Motivation: Many graphs are too large to store (e.g., the internet, social networks)
- Input: Stream of edges in an n-vertex graph

Goal: Answer questions about the graph without storing all edges

- Most commonly O (n polylog n) memory (semi-streaming); $o\left(n^{2}\right)$ is still interesting
- 1 pass is ideal; can make a few more
- A good survey is [McG14]

Tournaments

- Digraphs in which all pairs of vertices have exactly 1 edge between them
- Imagine a directed clique, or a competition where all pairs of players compete once
- Many streaming digraph problems are much easier on tournaments than on general digraphs [CGMV20]
- SOTA: upper bounds on tournaments and lower bounds on general digraphs

Source: Wikipedia

Feedback Arc Set (FAS)

- Problem: What ordering of vertices minimizes number of back-edges?
- Gap between general digraphs and tournaments

FAS	Tournaments	Digraphs
Upper Bound	$(1+\epsilon)$ approx.: $\tilde{O}(n)$ space in 1 pass (exp. time) [CGMV20] $\tilde{O}\left(n^{1+1 / p}\right)$ space in p passes (poly. time) [BJW21]	
Lower Bound		

Feedback Arc Set (FAS)

- Problem: What ordering of vertices minimizes number of back-edges?
- Gap between general digraphs and tournaments

FAS	Tournaments	Digraphs		
$(1+\epsilon)$ approx.:				
	$\tilde{O}(n)$ space in 1 pass (exp. time) [CGMV20]			
			\quad	?
:---				

Lower Bound

Exact and $(1+\epsilon)$ approx. for small ϵ : $\Omega\left(n^{2}\right)$ space in 1 pass!

Any multiplicative approx.:
$\Omega\left(n^{2}\right)$ space in 1 pass
$\Omega\left(n^{1+\Omega(1 / p)}\right)$ space in p passes [CGMV20]

First $\Omega\left(n^{2}\right)$ lower bound on tournaments

Proof

Given a stream of edges in a tournament, followed by a pair of vertices u and v, determining the orientation of the edge between u and v is hard.

If we can use the minimum FAS ordering to determine the orientation of the edge, it must also be hard.

Proof

What if we force u and v to be before T in the optimal FAS ordering?

By adding a new large tournament A, we force the optimal FAS ordering to place u and v before A and T after A. Now, if the ordering puts u before v, we know the edge must be oriented from u to v, and vice versa.

Thus, we can determine the orientation of the edge, so minimum FAS ordering must also be hard. Proof formalized using communication complexity.

Results

- Single-pass lower bounds on tournaments:
- $\Omega\left(n^{2}\right)$ space for exact FAS ordering (and (1+ $1+$) approx. for small ϵ)
- $\Omega\left(n^{2}\right)$ space for exact FAS size (and $(1+\epsilon)$ approx. for small ϵ)
- $\Omega\left(n^{2}\right)$ space for s-t distance
- Multi-pass lower bounds on tournaments (p passes):
- $\Omega(n / p)$ space for s-t connectivity
- $\Omega(n / p)$ space for acyclicity testing (simplified proof from [CGMV20])
- Algorithms on tournaments (p passes):
- $\tilde{O}(n / p)$ space algorithm for acyclicity testing (matches lower bound)
- $\tilde{O}\left(n^{1+1 / p}\right)$ space algorithm for s-t connectivity
- Lower bounds on general digraphs (p passes):
- $\Omega(n / p)$ space for finding a sink in a general directed graph (matches upper bound)

Next Steps

- Better FAS upper bounds:
- We don't know any polynomial-time algorithms for FAS ordering or size that get better than a 5approximation in a single pass
- FAS approximation lower bounds:
- Can we rule out better space-approximation trade-offs?
- Deterministic FAS:
- Can we get equally good algorithms or stronger lower bounds?
- Algorithms for s-t distance on tournaments
- Lower bounds for s-t connectivity on tournaments
- More interesting models (insertion-deletion, random order streams)

Acknowledgements

- Dr. Prantar Ghosh, for being an amazing mentor.
- Prof. Gallos, Caleb and the rest of the REU team, for organizing this program.
- The NSF, for sponsoring REU programs like these.
- Prof. Sudan, Prof. Hesterberg and my other mentors at Harvard, for encouraging me to try research this summer.
- My family and friends, some of whom are watching right now.
- All of the REU students, for their support and encouragement, and for making this summer fun.

Citations

- [BJW21] Anubhav Baweja, Justin Jia, and David P. Woodruff. An Efficient Semi-Streaming PTAS for Tournament Feedback Arc Set with Few Passes. Innovations in Theoretical Computer Science, 2022.
- [CGMV20] Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex Ordering Problems in Directed Graph Streams. In Proc. 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2020.
- [McG14] Andrew McGregor. Graph stream algorithms: a survey. In SIGMOD Rec., 43(1), pages 9-20, 2014.

