Rate 1 Non-malleable codes for polysize tampering

Svetlana Ivanova and Guillermo Gamboa

REU 2022, Rutgers University

This research is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 823748.
Coding schemes and tampering experiment

- Alice wants to send a message $m \in \{0, 1\}^k$ to Bob using the coding scheme (Enc, Dec), where

 \[
 Enc : \{0, 1\}^k \rightarrow \{0, 1\}^n \text{ is a randomized encoding function}
 \]

 \[
 Dec : \{0, 1\}^n \rightarrow \{0, 1\}^k \cup \{\bot\} \text{ is a deterministic decoding function}
 \]

and $\mathbb{P}[Dec(Enc(m)) = m] = 1$.

Mallory gets into the channel and tampers with $Enc(m)$ using a function f from a set F of tampering functions. Bob would want that $Dec(f(Enc(m)))$ is either m or completely unrelated to what Alice sent. Can we achieve this independent of the message m?
Coding schemes and tampering experiment

- Alice wants to send a message \(m \in \{0, 1\}^k \) to Bob using the coding scheme \((\text{Enc}, \text{Dec})\), where

\[
\text{Enc} : \{0, 1\}^k \rightarrow \{0, 1\}^n \text{ is a randomized encoding function}
\]

\[
\text{Dec} : \{0, 1\}^n \rightarrow \{0, 1\}^k \cup \{\bot\} \text{ is a deterministic decoding function}
\]

and \(\mathbb{P}[\text{Dec}(\text{Enc}(m)) = m] = 1 \).

- Mallory gets into the channel and tampers with \(\text{Enc}(m) \) using a function \(f \) from a set \(\mathcal{F} \) of tampering functions.
Alice wants to send a message $m \in \{0, 1\}^k$ to Bob using the coding scheme (Enc, Dec), where

$\begin{align*}
Enc : \{0, 1\}^k &\rightarrow \{0, 1\}^n \text{ is a randomized encoding function} \\
Dec : \{0, 1\}^n &\rightarrow \{0, 1\}^k \cup \{\bot\} \text{ is a deterministic decoding function}
\end{align*}$

and $\mathbb{P}[Dec(Enc(m)) = m] = 1$.

Mallory gets into the channel and tampers with $Enc(m)$ using a function f from a set \mathcal{F} of tampering functions.

Bob would want that $Dec(f(Enc(m)))$ is either m or completely unrelated to what Alice sent. Can we achieve this independent of the message m?
The coding scheme \((Enc, Dec)\) is **non-malleable w.r.t.** \(\mathcal{F}\) if for each \(f \in \mathcal{F}\) we can find a distribution \(D_f\) over \(\{0, 1\}^k \cup \{\perp\}\) such that the tampering experiment is "statistically indistinguishable" to the experiment \(m' \leftarrow D_f\).
Examples of tampering

- Bit-Wise Independent Tampering - covers the majority of real-world tampering attacks that have been demonstrated in practice.
- Tampering By Polynomial Size Circuits - type of tampering we’re focusing on.
The goal of our project

To construct a "rate compiler" that converts any non-malleable code resilient to tampering by size n^c circuits into a rate-1 non-malleable code resilient to tampering by size n^d (for constant $d < c$) circuits.