About Linux

- Open Source Operating System
About Linux

- Open Source Operating System
- 100s or more contributors
About Linux

- Open Source Operating System
- 100s or more contributors
- 7 contributors with rutgers.edu emails
About Linux

- Open Source Operating System
- 100s or more contributors
- 7 contributors with rutgers.edu emails
- hope to make it 8
About Linux

- Open Source Operating System
- 100s or more contributors
- 7 contributors with rutgers.edu emails
- hope to make it 8
- cute mascot
About Linux

- Open Source Operating System
- 100s or more contributors
- 7 contributors with rutgers.edu emails
- hope to make it 8
- cute mascot
Two Level Memory

- RAM

 - low latency - nanoseconds
 - small capacity
 - high bandwidth - GB/s

- Disk
 - enormous latency - milliseconds
 - large capacity
 - medium bandwidth - 10s of MB/s
Two Level Memory

- RAM
 - low latency - nanoseconds
Two Level Memory

- RAM
 - low latency - nanoseconds
 - small capacity
Two Level Memory

- RAM
 - low latency - nanoseconds
 - small capacity
 - high bandwidth - GB/s
Two Level Memory

- RAM
 - low latency - nanoseconds
 - small capacity
 - high bandwidth - GB/s

- Disk
Two Level Memory

- **RAM**
 - low latency - nanoseconds
 - small capacity
 - high bandwidth - GB/s

- **Disk**
 - enormous latency - milliseconds
Two Level Memory

- RAM
 - low latency - nanoseconds
 - small capacity
 - high bandwidth - GB/s

- Disk
 - enormous latency - milliseconds
 - large capacity
Two Level Memory

- **RAM**
 - low latency - nanoseconds
 - small capacity
 - high bandwidth - GB/s

- **Disk**
 - enormous latency - milliseconds
 - large capacity
 - medium bandwidth - 10s of MB/s
Latency/Bandwidth Ratio

- use blocks
Latency/Bandwidth Ratio

- use blocks
- amortized latency = latency / block accesses
Latency/Bandwidth Ratio

- use blocks
- amortized latency = latency / block accesses
- exploits locality of reference
Memory Abstraction

Virtual Memory
Memory Abstraction

- Virtual Memory
- Hide real location of data
Memory Abstraction

- Virtual Memory
- Hide real location of data
- Evict pages when needed
Eviction

- Clean vs Dirty
Eviction

- Clean vs Dirty
- Dirty write back costly
Eviction

- Clean vs Dirty
- Dirty write back costly
- Eviction Policy
 - Least Recently Used
 - Least Frequently Used
LRU in Linux

- active list
LRU in Linux

- active list
- inactive list
LRU in Linux

- active list
- inactive list
- on reference, move up
LRU in Linux

- active list
- inactive list
- on reference, move up
- periodically, refill inactive
LRU in Linux

- active list
- inactive list
- on reference, move up
- periodically, refill inactive
- only approximation to LRU
LRU insufficient

- Databases do own memory management
LRU insufficient

- Databases do own memory management
- Clashes with OS
Properties of Disk

- mechanical movement
- disk seeks slow
- small writes costly
Properties of Disk

- mechanical movement
 - disk seeks slow
 - small writes costly
- the big secret
 - page write cost = track write cost
Properties of Disk

- mechanical movement
 - disk seeks slow
 - small writes costly
- the big secret
 - page write cost = track write cost
- about 30 pages per track
Properties of Disk

- mechanical movement
 - disk seeks slow
 - small writes costly
- the big secret
 - page write cost = track write cost
 - about 30 pages per track
- try to cluster page writes
Properties of Disk

- mechanical movement
 - disk seeks slow
 - small writes costly
- the big secret
 - page write cost = track write cost
- about 30 pages per track
- try to cluster page writes
- benchmark
 - Sequential page writes - 8 MB/s
 - Random page writes - .35 MB/s
Aggressive Write back

- LRU decides to evict a page
Aggressive Write back

- LRU decides to evict a page
- Aggressively write back nearby pages
Aggressive Write back

- LRU decides to evict a page
- Aggressively write back nearby pages
- Relatively easy to bolt on
Aggressive Writeback

- LRU decides to evict a page
- Aggressively write back nearby pages
- Relatively easy to bolt on
- Theoretically wrong
Better Idea

- dirtiness should be bigger factor
Better Idea

- dirtiness should be bigger factor
- prefer dirtier tracks
Better Idea

- dirtiness should be bigger factor
- prefer dirtier tracks
- out of scope of project
Progress

- some source code level understanding
Progress

- some source code level understanding
- printing out data structures in kernel
Progress

- some source code level understanding
- printing out data structures in kernel
- no behavioral modification yet
Acknowledgements

- DIMACS
Acknowledgements

- DIMACS
- Martin Farach-Colton
Acknowledgements

- DIMACS
- Martin Farach-Colton
- All the REU students