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Introduction

Definition
A group G is said to be locally embeddable into finite groups (LEF )
if for every finite subset F ⊆ G, there is an injection φ : F → H
into a finite group H such that if x , y , xy ∈ F , then

φ(xy) = φ(x)φ(y).

Nonobvious Example
If F is any field, then the general linear group GL(n,F ) is LEF .

Nonexample

The Baumslag-Solitar group BS(2,3) = ⟨a,b | a−1b2a = b3 ⟩
is not LEF .
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Characterizing LEF groups

Definition
Let P =

∏
n∈N+ Sn be the full direct product of the finite symmetric

groups Sn.
Let N be the normal subgroup of those elements (πn) ∈ P such
that πn = 1 for all but finitely many n ∈ N+.
Then the reduced product of the Sn is the quotient P0 = P/N.

Theorem (Folklore)
If G is a countable group, then G is LEF if and only if G embeds into
the reduced product P0.

Why factor by N = ⊕n∈N+Sn?
The LEF group SL(3,Q) does not embed in P =

∏
n∈N+ Sn.
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Our work

Remark
Since the reduced product P0 has cardinality 2ℵ0 , it is natural to ask
whether the above characterization can be extended to the
uncountable groups G such that ℵ0 < |G| ≤ 2ℵ0 .

Using model-theoretic techniques, we have proved:

Theorem (Stetson-Thomas)
If G is a group with |G| = ℵ1, then G is LEF if and only if G embeds
into the reduced product P0.

This solves our problem if CH holds; i.e. if 2ℵ0 = ℵ1.

Question
What about if 2ℵ0 > ℵ1?
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Our work continues ...

Theorem (Stetson-Thomas)
It is consistent with ZFC that 2ℵ0 can be arbitarily large and whenever
G is a group with ℵ0 < |G| < 2ℵ0 , then G is LEF if and only if G
embeds into the reduced product P0.

Theorem (Stetson-Thomas)
It is consistent with ZFC that 2ℵ0 can be arbitarily large and there
exists an LEF G with |G| = ℵ2 such that G does not embed into the
reduced product P0.

Remark
Thus ZFC neither proves nor disproves our characterization for groups
of cardinality ℵ2.
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An Open Question

Theorem (Stetson-Thomas)
It is consistent with ZFC that 2ℵ0 can be arbitarily large and whenever
G is a group with ℵ0 < |G| < 2ℵ0 , then G is LEF if and only if G
embeds into the reduced product P0.

Question
But is it also consistent that our characterization is valid for groups of
cardinality 2ℵ0 > ℵ1?

Remark
We conjecture that this is indeed consistent.
However, it is clear that the proof will require more sophisticated
forcing techniques.
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Questions & Support

Any questions?

Thank you for your attention.

On the DIMACS REU side, at least, this work is being supported by the
Rutgers Department of Mathematics and NSF Grant DMS-2019396.
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