Philip Stetson and Simon Thomas (Mentor)

Rutgers University

21 July 2023

Philip Stetson and Simon Thomas

Rutgers REU 2023

21 July 2023

-

Definition

A group *G* is said to be locally embeddable into finite groups (*LEF*) if for every finite subset $F \subseteq G$, there is an injection $\varphi : F \to H$ into a finite group *H* such that if *x*, *y*, *xy* \in *F*, then

 $\varphi(\mathbf{x}\mathbf{y}) = \varphi(\mathbf{x})\varphi(\mathbf{y}).$

A B F A B F

Definition

A group *G* is said to be locally embeddable into finite groups (*LEF*) if for every finite subset $F \subseteq G$, there is an injection $\varphi : F \to H$ into a finite group *H* such that if *x*, *y*, *xy* \in *F*, then

$$\varphi(\mathbf{x}\mathbf{y}) = \varphi(\mathbf{x})\varphi(\mathbf{y}).$$

Nonobvious Example

If F is any field, then the general linear group GL(n, F) is LEF.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A group *G* is said to be locally embeddable into finite groups (*LEF*) if for every finite subset $F \subseteq G$, there is an injection $\varphi : F \to H$ into a finite group *H* such that if *x*, *y*, *xy* \in *F*, then

$$\varphi(\mathbf{x}\mathbf{y}) = \varphi(\mathbf{x})\varphi(\mathbf{y}).$$

Nonobvious Example

If *F* is any field, then the general linear group GL(n, F) is *LEF*.

Nonexample

The Baumslag-Solitar group
$$BS(2,3) = \langle a, b \mid a^{-1}b^2a = b^3 \rangle$$
 is not *LEF*.

Philip Stetson and Simon Thomas

Rutgers REU 2023

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Philip Stetson and Simon Thomas

Rutgers REU 2023

21 July 2023

Э.

イロト イヨト イヨト イヨト

Definition

Let P = ∏_{n∈ℕ+} S_n be the full direct product of the finite symmetric groups S_n.

4 A N

Definition

- Let $P = \prod_{n \in \mathbb{N}^+} S_n$ be the full direct product of the finite symmetric groups S_n .
- Let N be the normal subgroup of those elements (π_n) ∈ P such that π_n = 1 for all but finitely many n ∈ N⁺.

Definition

- Let $P = \prod_{n \in \mathbb{N}^+} S_n$ be the full direct product of the finite symmetric groups S_n .
- Let N be the normal subgroup of those elements (π_n) ∈ P such that π_n = 1 for all but finitely many n ∈ N⁺.
- Then the reduced product of the S_n is the quotient $P_0 = P/N$.

Definition

- Let $P = \prod_{n \in \mathbb{N}^+} S_n$ be the full direct product of the finite symmetric groups S_n .
- Let N be the normal subgroup of those elements (π_n) ∈ P such that π_n = 1 for all but finitely many n ∈ N⁺.
- Then the reduced product of the S_n is the quotient $P_0 = P/N$.

Theorem (Folklore)

If G is a countable group, then G is LEF if and only if G embeds into the reduced product P_0 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- Let $P = \prod_{n \in \mathbb{N}^+} S_n$ be the full direct product of the finite symmetric groups S_n .
- Let N be the normal subgroup of those elements (π_n) ∈ P such that π_n = 1 for all but finitely many n ∈ N⁺.
- Then the reduced product of the S_n is the quotient $P_0 = P/N$.

Theorem (Folklore)

If G is a countable group, then G is LEF if and only if G embeds into the reduced product P_0 .

Why factor by $N = \bigoplus_{n \in \mathbb{N}^+} S_n$?

Philip Stetson and Simon Thomas

э.

・ロト ・ 四ト ・ ヨト ・ ヨト

Definition

- Let $P = \prod_{n \in \mathbb{N}^+} S_n$ be the full direct product of the finite symmetric groups S_n .
- Let N be the normal subgroup of those elements (π_n) ∈ P such that π_n = 1 for all but finitely many n ∈ N⁺.
- Then the reduced product of the S_n is the quotient $P_0 = P/N$.

Theorem (Folklore)

If G is a countable group, then G is LEF if and only if G embeds into the reduced product P_0 .

Why factor by $N = \bigoplus_{n \in \mathbb{N}^+} S_n$?

The *LEF* group SL(3, \mathbb{Q}) does not embed in $P = \prod_{n \in \mathbb{N}^+} S_n$.

ъ

Remark

Since the reduced product P_0 has cardinality 2^{\aleph_0} , it is natural to ask whether the above characterization can be extended to the uncountable groups *G* such that $\aleph_0 < |G| \le 2^{\aleph_0}$.

Remark

Since the reduced product P_0 has cardinality 2^{\aleph_0} , it is natural to ask whether the above characterization can be extended to the uncountable groups *G* such that $\aleph_0 < |G| \le 2^{\aleph_0}$.

Using model-theoretic techniques, we have proved:

Theorem (Stetson-Thomas)

If G is a group with $|G| = \aleph_1$, then G is LEF if and only if G embeds into the reduced product P_0 .

Remark

Since the reduced product P_0 has cardinality 2^{\aleph_0} , it is natural to ask whether the above characterization can be extended to the uncountable groups *G* such that $\aleph_0 < |G| \le 2^{\aleph_0}$.

Using model-theoretic techniques, we have proved:

Theorem (Stetson-Thomas)

If G is a group with $|G| = \aleph_1$, then G is LEF if and only if G embeds into the reduced product P_0 .

This solves our problem if *CH* holds; i.e. if $2^{\aleph_0} = \aleph_1$.

Question

What about if $2^{\aleph_0} > \aleph_1$?

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It is consistent with ZFC that 2^{\aleph_0} can be arbitarily large and whenever G is a group with $\aleph_0 < |G| < 2^{\aleph_0}$, then G is LEF if and only if G embeds into the reduced product P_0 .

It is consistent with ZFC that 2^{\aleph_0} can be arbitarily large and whenever G is a group with $\aleph_0 < |G| < 2^{\aleph_0}$, then G is LEF if and only if G embeds into the reduced product P_0 .

Theorem (Stetson-Thomas)

It is consistent with ZFC that 2^{\aleph_0} can be arbitarily large and there exists an LEF G with $|G| = \aleph_2$ such that G does not embed into the reduced product P_0 .

It is consistent with ZFC that 2^{\aleph_0} can be arbitarily large and whenever G is a group with $\aleph_0 < |G| < 2^{\aleph_0}$, then G is LEF if and only if G embeds into the reduced product P_0 .

Theorem (Stetson-Thomas)

It is consistent with ZFC that 2^{\aleph_0} can be arbitarily large and there exists an LEF G with $|G| = \aleph_2$ such that G does not embed into the reduced product P_0 .

Remark

Thus *ZFC* neither proves nor disproves our characterization for groups of cardinality \aleph_2 .

< ロ > < 同 > < 回 > < 回 >

It is consistent with ZFC that 2^{\aleph_0} can be arbitarily large and whenever G is a group with $\aleph_0 < |G| < 2^{\aleph_0}$, then G is LEF if and only if G embeds into the reduced product P_0 .

Question

But is it also consistent that our characterization is valid for groups of cardinality $2^{\aleph_0} > \aleph_1$?

It is consistent with ZFC that 2^{\aleph_0} can be arbitarily large and whenever G is a group with $\aleph_0 < |G| < 2^{\aleph_0}$, then G is LEF if and only if G embeds into the reduced product P_0 .

Question

But is it also consistent that our characterization is valid for groups of cardinality $2^{\aleph_0} > \aleph_1$?

Remark

• We conjecture that this is indeed consistent.

It is consistent with ZFC that 2^{\aleph_0} can be arbitarily large and whenever G is a group with $\aleph_0 < |G| < 2^{\aleph_0}$, then G is LEF if and only if G embeds into the reduced product P_0 .

Question

But is it also consistent that our characterization is valid for groups of cardinality $2^{\aleph_0} > \aleph_1$?

Remark

- We conjecture that this is indeed consistent.
- However, it is clear that the proof will require more sophisticated forcing techniques.

< ロ > < 同 > < 回 > < 回 >

Any questions?

Thank you for your attention.

On the DIMACS REU side, at least, this work is being supported by the Rutgers Department of Mathematics and NSF Grant DMS-2019396.