LEF Groups

Philip Stetson and Simon Thomas (Mentor)

Rutgers University

5 June 2023
A group G is said to be locally embeddable into finite groups if for every finite subset $F \subseteq G$, there is an injection $\varphi : F \to H$ into a finite group H such that if $x, y, xy \in F$, then

$$\varphi(xy) = \varphi(x)\varphi(y).$$

In this case, we say that G is an LEF group.

It can be shown (with considerable effort) that the general linear group $\text{GL}(n, \mathbb{R})$ is an LEF group.
In the literature, \emph{LEF} groups are characterized as the groups which embed in a suitable ultraproduct of the finite symmetric groups S_n.

Unfortunately, the ultraproduct construction makes use of a nonprincipal ultrafilter; and these cannot be proved to exist without the Axiom of Choice.

In preliminary work, we have found a more concrete characterization of the countable \emph{LEF} groups.
The Reduced Product

Definition

Let $P = \prod_{n \in \mathbb{N}^+} S_n$ be the full direct product of the finite symmetric groups S_n.

Let N be the normal subgroup of those elements $(\pi_n) \in P$ such that $\pi_n = 1$ for all but finitely many $n \in \mathbb{N}^+$.

Then the reduced product of the S_n is the quotient P/N.

Theorem (Stetson-Thomas)

If G is a countable group, then the following are equivalent:

(i) G is an LEF group.

(ii) G embeds into the reduced product P/N.
The Research Problem

Remark
Since the reduced product P/N has cardinality 2^{\aleph_0}, it is natural to ask whether the above characterization can be extended to the groups G such that $|G| \leq 2^{\aleph_0}$.

Research Problem

Is it true that if G is a group such that $|G| \leq 2^{\aleph_0}$, then the following are equivalent:

(i) G is an LEF group.
(ii) G embeds into the reduced product P/N.

Remark
We expect that this statement will turn out to be independent of the axioms ZFC of set theory.
Thank you for your attention. On the DIMACS REU side, at least, this work is being supported by the Rutgers Department of Mathematics and Kristen Hendricks’ NSF CAREER Grant DMS-2019396.