A matrix sequence \(\{\Gamma(A^m)\}_{m=1}^{\infty} \) might converge even if the matrix \(A \) is not primitive

Woongbae Park\(^a\), Boram Park\(^b,*,1\), Suh-Ryung Kim\(^c,2\)

\(^a\) Department of Mathematical Science, Seoul National University, Seoul 151-742, South Korea
\(^b\) DIMACS, Rutgers University, Piscataway, NJ 08854, United States
\(^c\) Department of Mathematics Education, Seoul National University, Seoul 151-742, South Korea

ARTICLE INFO

Article history:
Received 29 May 2012
Accepted 15 October 2012
Available online 1 December 2012
Submitted by R.A. Brualdi

AMS classification:
05C20
05C50

Keywords:
Irreducible Boolean \((0, 1)\)-matrix
Powers of Boolean \((0, 1)\)-matrices
Competition graph
Graph sequence
Powers of digraphs

ABSTRACT

It is well-known that, for an irreducible Boolean \((0, 1)\)-matrix \(A \), the matrix sequence \(\{A^m\}_{m=1}^{\infty} \) converges if and only if \(A \) is primitive. In this paper, we introduce an operation \(\Gamma \) on the set of Boolean \((0, 1)\)-matrices such that a matrix sequence \(\{\Gamma(A^m)\}_{m=1}^{\infty} \) might converge even if the matrix \(A \) is not primitive. Given a Boolean \((0, 1)\)-matrix \(A \), we define a matrix \(\Gamma(A) \) so that the \((i, j)\)-entry of \(\Gamma(A) \) equals 0 if for \(i \neq j \), the inner product of the \(i \)th row and \(j \)th row of \(A \) is 0 and equals 1 otherwise.

The aim of this paper is to study the convergence of \(\{\Gamma(A^m)\}_{m=1}^{\infty} \) for a Boolean \((0, 1)\)-matrix \(A \) whose digraph has at most two strong components. We show that \(\{\Gamma(A^m)\}_{m=1}^{\infty} \) converges to a very special type of matrix as \(m \) increases if \(A \) is an irreducible Boolean matrix. Furthermore, we completely characterize a Boolean \((0, 1)\)-matrix \(A \) whose digraph has exactly two strongly connected components and for which \(\{\Gamma(A^m)\}_{m=1}^{\infty} \) converges, and find the limit of \(\{\Gamma(A^m)\}_{m=1}^{\infty} \) in terms of its digraph when it converges. We derive these results in terms of the competition graph of the digraph of \(A \).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The focus of this paper is a problem about the convergence of a certain sequence of Boolean \((0, 1)\)-matrices or equivalently the convergence of the \(m \)-step competition graphs of certain digraphs.

* Corresponding author.

E-mail addresses: boramp@dimacs.rutgers.edu, borampark22@gmail.com (B. Park).

1 This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-357-C00004).

2 This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MEST) (No. 2011-0005188).

0024-3795/$ - see front matter © 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2012.10.012
Throughout the paper, we will state definitions, facts, and theorems (where appropriate) in terms of both Boolean \((0, 1)\)-matrices and competition graphs.

As a matter of fact, for a matrix \(A\) in \(B_n\), we define a matrix \(\Gamma(A) = (\gamma_{ij}) \in B_n\) by

\[
\gamma_{ij} = \begin{cases}
0 & \text{if } i = j; \\
0 & \text{if } i \neq j \text{ and the inner product of row } i \text{ and row } j \text{ of } A \text{ is 0}; \\
1 & \text{if } i \neq j \text{ and the inner product of row } i \text{ and row } j \text{ of } A \text{ is not 0}.
\end{cases}
\]

As a matter of fact, for a matrix \(A \in B_n\), \(\Gamma(A)\) is the adjacency matrix of the competition graph of the digraph \(D\) of \(A\). Given a matrix \(A\) in \(B_n\), there exists a unique digraph whose adjacency matrix is \(A\). We call such a digraph the digraph of \(A\) and denote it by \(D(A)\).

Given a digraph \(D\), the
competition graph \(C(D)\) of \(D\) has the same vertex set as \(D\) and has an edge between vertices \(u\) and \(v\) if and only if there exists a common prey of \(u\) and \(v\) in \(D\). If \((u, v)\) is an arc of a digraph \(D\), then we call \(v\) a prey of \(u\) (in \(D\)) and call \(u\) a predator of \(v\) (in \(D\)). A graph \(G\) is called the
row graph of a matrix \(M\) if the rows of \(M\) are the vertices of \(G\), and two vertices are adjacent in \(G\) if and only if their corresponding rows have a nonzero entry in the same column of \(M\). This notion was studied by Greenberg et al. [6]. As noted in [6], the competition graph of a digraph \(D\) is the row graph of its adjacency matrix. Thus it can easily be checked that the adjacency matrix of the competition graph of a digraph \(D\) is \(\Gamma(A)\) where \(A\) is the adjacency matrix of \(D\).

The notion of competition graph is due to Cohen [5] and has arisen from ecology. Competition graphs also have applications in coding, radio transmission, and modeling of complex economic systems. (See [13, 14] for a summary of these applications.)

The greatest common divisor of all lengths of directed cycles in a nontrivial strongly connected digraph \(D\) is called the
index of imprimitivity of \(D\). A digraph \(D\) is said to be primitive if \(D\) is strongly connected and has the index of imprimitivity 1. Let \(A\) be a matrix in \(B_n\). If \(D(A)\) is strongly connected, then we say \(A\) is irreducible. We call the index of imprimitivity of \(D(A)\) the
index of imprimitivity of \(A\), when \(A\) is irreducible. If \(D(A)\) is primitive, then we say that \(A\) is primitive. For undefined terms in the following, the reader is referred to [2].

It is well-known that for an irreducible matrix \(A\) in \(B_n\), the matrix sequence \(\{A^m\}_{m=1}^{\infty}\) converges if and only if \(A\) is primitive. Yet, a matrix sequence \(\{\Gamma(A^m)\}_{m=1}^{\infty}\) might converge even if the matrix \(A\) is not primitive. For example, the \(m\)th power of the matrix \(A\) given in Fig. 1 does not converge as \(m\) increases since it is not primitive. However, the \(\{\Gamma(A^m)\}_{m=1}^{\infty}\) converges to \(A'\) since \(\Gamma(A^m) = A'\) for any positive integer \(m\).

In this paper, we study the convergence of \(\{\Gamma(A^m)\}_{m=1}^{\infty}\) for a matrix \(A \in B_n\) whose digraph has at most two strongly connected components. We show that \(\{\Gamma(A^m)\}_{m=1}^{\infty}\) converges as \(m\) increases for any irreducible Boolean matrix \(A\) and its limit is a block diagonal matrix each of whose blocks consists of all 1s up to conjugation by simultaneous permutation of rows and columns. From now on, we call such a matrix
J block diagonal (for short JBD) matrix (where \(J\) means a matrix with all 1s). Furthermore, we completely characterize a matrix \(A \in B_n\) whose digraph has exactly two strongly connected components and for which \(\{\Gamma(A^m)\}_{m=1}^{\infty}\) converges, and find the limit of \(\{\Gamma(A^m)\}_{m=1}^{\infty}\) in terms of its digraph when it converges. We derive these facts in terms of the competition graph of the digraph of \(A\).
Given a digraph D and a positive integer m, a vertex y is an m-step prey of a vertex x if and only if there exists a directed walk from x to y of length m. Given a digraph D and a positive integer m, the digraph D^m has the vertex set same as D and has an arc (u, v) if and only if u is an m-step prey of v. It is well-known that a digraph D is primitive if and only if D^m equals the digraph which has all possible arcs for any $m \geq N$ for some positive integer N (we call the smallest such integer N the exponent of D).

Motivated by this, we say that a graph sequence \{G\}_n=1 is well-known that a digraph D is primitive if and only if D^m has only complete components as m increases if D is strongly connected, completely characterize a digraph D with exactly two strong components for which $(D^m)_m=1$ converges, and find the limit of $(D^m)_m=1$ when $(D^m)_m=1$ converges.

Given a positive integer m, the m-step competition graph of a digraph D, denoted by $C^m(D)$, has the same vertex set as D and has an edge between vertices u and v if and only if there exists an m-step common prey of u and v. The notion of m-step competition graph is introduced by Cho et al. \[4\] and one of the important variations (see the survey articles by Kim \[10\] and Lundgren \[12\] for the variations which have been defined and studied by many authors since Cohen introduced the notion of competition). Since its introduction, it has been extensively studied (see for example \[1,3,7–9,11,16\]).

Cho and Kim \[3\] showed that for any digraph D and a positive integer m, $C^m(D) = C(D^m)$. Thus the limit of the graph sequence $(C(D^m))_m=1$ if it exists, is the same as that of the graph sequence $(C(D^m))_m=1$. Consequently studying the graph sequence $(C(D^m))_m=1$ is actually studying the sequence of m-step competition graphs of D.

2. $(\Gamma(A^m))_m=1$ for an irreducible matrix $A \in B_n$

In this section, we study the convergence and the limit graph of $(\Gamma(A^m))_m=1$ when A is an irreducible matrix in $A \in B_n$. As mentioned previously, $\Gamma(A^m)$ corresponds to the competition graph of D^m where D is the digraph of A for a positive integer m.

We start with the following observation.

Theorem 2.1. If a digraph D is trivial or each vertex of D has an out-neighbor, then $(C(D^m))_m=1$ converges.

Proof. The proposition immediately holds for a trivial digraph. Let D be a nontrivial digraph such that each vertex has an out-neighbor. To show that $E(C(D^m)) \subseteq E(C(D^m+1))$ for any integer m, take an edge uv in $E(C(D^m))$ for some positive integer m. Then there exists a vertex z in D such that (u,z) and (v,z) are arcs of D^m for some vertex z. In D, z is a common m-step prey of u and v. By the assumption on D, there exists a vertex x such that $(z,x) \in A(D)$. Then x is a common $(m+1)$-step prey of u and v in D, that is, x is a common prey of u and v in D^m+1. Therefore u and v are adjacent in $C(D^m+1)$. Thus we have shown that $E(C(D^m)) \subseteq E(C(D^m+1))$ for any integer m. Since the competition graph of a digraph is defined to be simple, $E(C(D^m)) \subseteq E(K_n)$ for each m where $n = |V(D)|$. Therefore, it can easily be checked that there exists an integer N such that for any $n \geq N$, $C(D^n) = C(D^N)$, which implies that $(C(D^m))_m=1$ converges. \[\square\]

Theorem 2.1 is translated into the matrix version as follows:

Corollary 2.2. If a Boolean $(0,1)$-matrix A has order 1 or has at least one 1 in each row, then $(\Gamma(A^m))_m=1$ converges.

It is known that if κ is the index of imprimitivity of a digraph D, then D has an ordered partition \{$U_1, U_2, \ldots, U_\kappa$\} of $V(D)$ such that $U_{\kappa+1} = U_1$ and each arc of D issues from U_j and enters U_{j+1} for some $j = 1, 2, \ldots, \kappa$. The sets $U_1, U_2, \ldots, U_\kappa$ are called the sets of imprimitivity of D.
If D is a trivial digraph, then the index of imprimitivity of D is undefined. Given a strongly connected digraph D, we define $\kappa(D)$ as 1 if D is trivial and as the index of imprimitivity of D otherwise. In addition, if D is a trivial digraph, then we denote the vertex set by U_1 and call it ‘the sets of imprimitivity of D’.

If a digraph D is strongly connected, then the graph sequence $\{C(D^m)\}_{m=1}^{\infty}$ converges by Theorem 2.1. Then it is natural to ask: What is the limit of the sequence? In the rest of this section, we answer the question by showing that the limit of $\{C(D^m)\}_{m=1}^{\infty}$ is the union of exactly $\kappa(D)$ complete components.

Theorem 2.3. If D is strongly connected, then the limit of $\{C(D^m)\}_{m=1}^{\infty}$ is the disjoint union of complete graphs whose vertex sets are the sets of imprimitivity of D.

The above theorem immediately implies the following corollary.

Corollary 2.4. If A is an irreducible $(0, 1)$-Boolean matrix, then the limit of $\{\Gamma(A^m)\}_{m=1}^{\infty}$ is transformable into a block diagonal matrix by simultaneous permutations of their lines in which each block is in the form of J_i, where J_i is a matrix with all elements 1 and i runs from 1 to the index of imprimitivity of A.

The following is a well-known result related to the index of imprimitivity of a digraph.

Theorem 2.5 [2, Theorem 3.4.5]. Let D be a nontrivial strongly connected digraph of order n with the index of imprimitivity κ, and A be the adjacency matrix of D. Then there exists a permutation matrix P of order n such that

$$PA^\ell P^T = \begin{pmatrix}
A_1 & O & \cdots & O \\
O & A_2 & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & A_r
\end{pmatrix},$$

where $r = \gcd(\kappa, \ell)$ and each of A_1, A_2, \ldots, A_r is an irreducible matrix with the index of imprimitivity $\frac{\ell}{r}$.

If a matrix A in B_n is primitive, then there exists a positive integer m such that the mth power A^m has only positive entries, and such smallest integer m is called the exponent of A, which is denoted by $\exp(A)$.

Suppose that D is a nontrivial strongly connected digraph. Let A be the adjacency matrix of D and $\kappa(D) = \kappa$. By Theorem 2.5, there exists a permutation matrix P such that

$$PA^\kappa P^T = \begin{pmatrix}
A_1 & O & \cdots & O \\
O & A_2 & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & A_\kappa
\end{pmatrix},$$

where A_i is primitive for any $1 \leq i \leq \kappa$. Let

$$M = \kappa \cdot \max\{\exp(A_i) \mid 1 \leq i \leq \kappa\}. \quad (2)$$

For simplicity, let $E = \max\{\exp(A_i) \mid 1 \leq i \leq \kappa\}$. Take a positive integer s. Since $PA^sM P^T = PA^s \cdot E P^T = (PA^\kappa P^T)^s E$.
PA^M P^T = \begin{pmatrix}
A_1^{SE} & 0 & \cdots & 0 \\
0 & A_2^{SE} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_k^{SE}
\end{pmatrix}

(3)

by (1). Since \(sE \geq \exp(A_i) \), any entry of \(A_i^{SE} \) is positive for each \(1 \leq i \leq \kappa \). Therefore \(D(A_i^{SE}) \) is a digraph with all possible arcs for each \(1 \leq i \leq \kappa \), and so \(D(A^{SM}) \) is a disjoint union of digraphs with all possible arcs, \(D(A_1^{SE}), D(A_2^{SE}), \ldots, D(A_k^{SE}) \).

Now we obtain the following lemma:

Lemma 2.6. Let \(D \) be a strongly connected digraph. Then there exists a positive integer \(M \) such that \(C(D^{SM}) \) has exactly \(\kappa(D) \) components all of which are complete for each positive integer \(s \).

Proof. Let \(\kappa = \kappa(D) \). If \(D \) is trivial, then \(\kappa = 1 \) and \(C(D^m) \) is trivial with the sets of imprimitivity of \(D \) as the vertex for any positive integer \(m \). Thus the lemma immediately holds for a trivial digraph. Suppose that \(D \) is not trivial and \(A \) is the adjacency matrix of \(D \). Then by (3), for each positive integer \(s \), \(D^{SM} \) is the disjoint union of digraphs with all possible arcs for \(M \) defined in (2). Thus \(C(D^{SM}) \) is the disjoint union of complete graphs whose vertex sets are \(V(D_1), V(D_2), \ldots, V(D_k) \), respectively. As \(V(D_1), V(D_2), \ldots, V(D_k) \) are the set of imprimitivity of \(D \), we complete the proof. \(\square \)

Now we are ready to prove Theorem 2.3:

Proof of Theorem 2.3. By Theorem 2.1, \(\{ C(D^m) \}_{m=1}^{\infty} \) converges. By Lemma 2.6, there exists a positive integer \(M \) such that \(C(D^{SM}) \) has exactly \(\kappa(D) \) components all of which are complete for each positive integer \(s \). Thus a graph with exactly \(\kappa(D) \) components all of which are complete is the limit of a subsequence \(\{ C(D^{SM}) \}_{s=1}^{\infty} \) of \(\{ C(D^m) \}_{m=1}^{\infty} \) and must be the limit of \(\{ C(D^m) \}_{m=1}^{\infty} \). \(\square \)

3. \(\{ \Gamma(A^m) \}_{m=1}^{\infty} \) for a matrix \(A \in B_n \) whose digraph has exactly two strong components

In this section, we study the convergence of \(\{ \Gamma(A^m) \}_{m=1}^{\infty} \) for a matrix \(A \in B_n \) such that

\[
PAP^T = \begin{bmatrix}
A_1 & F \\
0 & A_2
\end{bmatrix}
\]

for a permutation matrix \(P \) of order \(n \), a matrix \(F \), irreducible matrices \(A_1 \) and \(A_2 \). Again, we do so by studying the convergence of \(\{ C(D^m) \}_{m=1}^{\infty} \) for the digraph \(D \) of \(A \) which has exactly two strong components.

If a digraph \(D \) has two strong components and its underlying graph is disconnected, then \(\{ C(D^m) \}_{m=1}^{\infty} \) converges and the limit is the disjoint union of complete graphs as shown in Section 2. Thus, throughout this section, we only consider a weakly connected digraph whose underlying graph is connected.

Throughout this section, for a digraph \(D \) with exactly two strong components, we denote the components by \(D_1 \) and \(D_2 \) so that there is no arc from a vertex in \(D_2 \) to a vertex in \(D_1 \). For \(i = 1, 2 \) and for the positive integer \(M \), defined in (2), \(C(D_i^{SM}) \) has exactly \(\kappa(D_i) \) components all of which are complete for each positive integer \(s \). We denote the sets of imprimitivity of \(D_i \) by \(U_1^{(i)}, U_2^{(i)}, \ldots, U_{\kappa(D_i)}^{(i)} \).

In the rest of this section, we characterize a digraph \(D \) for which \(\{ C(D^m) \}_{m=1}^{\infty} \) converges, and go further to present its limit when \(\{ C(D^m) \}_{m=1}^{\infty} \) converges.

If both \(D_1 \) and \(D_2 \) are trivial, then it is clear that \(C(D^m) \) is an edgeless graph with two vertices for any integer \(m \). That is, if both \(D_1 \) and \(D_2 \) are trivial then \(\{ C(D^m) \}_{m=1}^{\infty} \) converges and the limit graph is an edgeless graph with two vertices. Thus, from now on, we only consider a digraph with exactly two strong components, at least one of which is nontrivial.
We completely characterize a digraph D with two strong components for which $\{C(D^m)\}_{m=1}^\infty$ converges. For a digraph D and a vertex v of D, $N_D^-(v)$ denotes the set of all in-neighbors of v.

Lemma 3.1. Let D be a weakly connected digraph with exactly two strong components D_1 and D_2. For any two vertices $u \in U_j^{(i)}$ and $v \in U_k^{(i)}$, the length of a directed (u, v)-walk is congruent to $k - j$ modulo $\kappa(D_i)$.

Proof. Since there is no arc from a vertex in D_2 to a vertex in D_1, a directed (u, v)-walk belongs to D_i. Since D_i is strongly connected, we may apply one of the known properties of a strongly connected digraph with the index of imprimitivity $\kappa(D_i)$ to verify the statement. □

Lemma 3.2. Let D be a weakly connected digraph with exactly two strong components D_1 and D_2. Then there exists an integer M such that $C(D^m)$ contains complete graphs whose vertex sets are $U_1^{(1)}$, $U_2^{(1)}$, $U_1^{(2)}$, $U_2^{(2)}$, respectively, as subgraphs for $m \geq M$.

Proof. By Theorem 2.3, there exists an integer M such that $C(D^m)$ and $C(D^m')$ equal disjoint union of complete graphs whose vertex sets are $U_1^{(1)}$, $U_2^{(1)}$, and complete graphs whose vertex sets are $U_1^{(2)}$, $U_2^{(2)}$, respectively, for $m \geq M$. Since $C(D^m)$ contains $C(D_1^m)$ and $C(D_2^m)$ as subgraphs for any positive integer m, the lemma holds. □

We also need the following lemma:

Lemma 3.3 [2, Lemma 3.4.3]. Let D be a nontrivial strongly connected digraph, and U_1, U_2, $U_k(D)$ be the sets of imprimitivity of D. Then there exists a positive integer N such that if x and y are vertices belonging respectively to U_i and U_j, then there are directed (x, y)-walks of every length $j - i + \kappa(D)$ with $t \geq N$.

Proposition 3.4. Let D be a weakly connected digraph with exactly two strong components D_1 and D_2 where D_1 is nontrivial and D_2 is trivial. Then $\{C(D^m)\}_{m=1}^\infty$ converges if and only if for the vertex v of D_2, $|\{i | U_i^{(1)} \cap N_D^-(v) \neq \emptyset\}| = 1$ or $\kappa(D_1)$. Moreover, the limit of $\{C(D^m)\}_{m=1}^\infty$ is a graph consisting of complete components if it converges.

Proof. Since D_1 is nontrivial, by Lemma 3.3, there exists a positive integer N for which the following holds:

If x and y are vertices belonging respectively to $U_i^{(1)}$ and $U_j^{(1)}$, then there are directed (x, y)-walks of every length $j - i + \kappa(D)$ with $t \geq N$.

We show the ‘if’ part of the proposition statement. By Lemma 3.2, there exists an integer M such that $C(D^m)$ contains the complete subgraphs whose vertex sets $U_1^{(1)}$, $U_2^{(1)}$, $U_1^{(2)}$, respectively, as subgraphs for $m \geq M$. In addition, there is no edge joining a vertex in D_1 and v in $C(D^m)$ for any positive integer m since v has no out-neighbor.

Suppose that $|\{i | U_i^{(1)} \cap N_D^-(v) \neq \emptyset\}| = 1$. Let $\{i | U_i^{(1)} \cap N_D^-(v) \neq \emptyset\} = \{i^*\}$. Then for any directed walk from a vertex in $U_i^{(1)}$ to v, the term right before v on the sequence belongs to $U_{i^*}^{(1)}$ and so it has length congruent to $i^* - i + 1$ modulo $\kappa(D_1)$. Since $i^* - i + 1 \not \equiv i^* - j + 1 \pmod {\kappa(D_1)}$ if $i \not \equiv j \pmod {\kappa(D_1)}$, two vertices belonging to distinct sets of imprimitivity cannot have an m-step common prey for any positive integer m and so there is no edge joining two vertices in distinct sets of imprimitivity in $C(D^m)$ for any positive integer m. Thus $\{C(D^m)\}_{m=1}^\infty$ converges to the disjoint union of complete graphs whose vertex sets are $U_1^{(1)}$, $U_2^{(1)}$, $\{v\}$.

Proof. Since D_1 is nontrivial, by Lemma 3.3, there exists a positive integer N for which the following holds:

If x and y are vertices belonging respectively to $U_i^{(1)}$ and $U_j^{(1)}$, then there are directed (x, y)-walks of every length $j - i + \kappa(D)$ with $t \geq N$.

We show the ‘if’ part of the proposition statement. By Lemma 3.2, there exists an integer M such that $C(D^m)$ contains the complete subgraphs whose vertex sets $U_1^{(1)}$, $U_2^{(1)}$, $U_1^{(2)}$, respectively, as subgraphs for $m \geq M$. In addition, there is no edge joining a vertex in D_1 and v in $C(D^m)$ for any positive integer m since v has no out-neighbor.

Suppose that $|\{i | U_i^{(1)} \cap N_D^-(v) \neq \emptyset\}| = 1$. Let $\{i | U_i^{(1)} \cap N_D^-(v) \neq \emptyset\} = \{i^*\}$. Then for any directed walk from a vertex in $U_i^{(1)}$ to v, the term right before v on the sequence belongs to $U_{i^*}^{(1)}$ and so it has length congruent to $i^* - i + 1$ modulo $\kappa(D_1)$. Since $i^* - i + 1 \not \equiv i^* - j + 1 \pmod {\kappa(D_1)}$ if $i \not \equiv j \pmod {\kappa(D_1)}$, two vertices belonging to distinct sets of imprimitivity cannot have an m-step common prey for any positive integer m and so there is no edge joining two vertices in distinct sets of imprimitivity in $C(D^m)$ for any positive integer m. Thus $\{C(D^m)\}_{m=1}^\infty$ converges to the disjoint union of complete graphs whose vertex sets are $U_1^{(1)}$, $U_2^{(1)}$, $\{v\}$.

Proof. Since D_1 is nontrivial, by Lemma 3.3, there exists a positive integer N for which the following holds:

If x and y are vertices belonging respectively to $U_i^{(1)}$ and $U_j^{(1)}$, then there are directed (x, y)-walks of every length $j - i + \kappa(D)$ with $t \geq N$.

We show the ‘if’ part of the proposition statement. By Lemma 3.2, there exists an integer M such that $C(D^m)$ contains the complete subgraphs whose vertex sets $U_1^{(1)}$, $U_2^{(1)}$, $U_1^{(2)}$, respectively, as subgraphs for $m \geq M$. In addition, there is no edge joining a vertex in D_1 and v in $C(D^m)$ for any positive integer m since v has no out-neighbor.

Suppose that $|\{i | U_i^{(1)} \cap N_D^-(v) \neq \emptyset\}| = 1$. Let $\{i | U_i^{(1)} \cap N_D^-(v) \neq \emptyset\} = \{i^*\}$. Then for any directed walk from a vertex in $U_i^{(1)}$ to v, the term right before v on the sequence belongs to $U_{i^*}^{(1)}$ and so it has length congruent to $i^* - i + 1$ modulo $\kappa(D_1)$. Since $i^* - i + 1 \not \equiv i^* - j + 1 \pmod {\kappa(D_1)}$ if $i \not \equiv j \pmod {\kappa(D_1)}$, two vertices belonging to distinct sets of imprimitivity cannot have an m-step common prey for any positive integer m and so there is no edge joining two vertices in distinct sets of imprimitivity in $C(D^m)$ for any positive integer m. Thus $\{C(D^m)\}_{m=1}^\infty$ converges to the disjoint union of complete graphs whose vertex sets are $U_1^{(1)}$, $U_2^{(1)}$, $\{v\}$.

Proof. Since D_1 is nontrivial, by Lemma 3.3, there exists a positive integer N for which the following holds:

If x and y are vertices belonging respectively to $U_i^{(1)}$ and $U_j^{(1)}$, then there are directed (x, y)-walks of every length $j - i + \kappa(D)$ with $t \geq N$.
Now suppose that \(|\{i \mid U_1^{(1)}(i) \cap N_D(v) \neq \emptyset\}| = \kappa(D_1)|. Let u_1, \ldots, u_{\kappa(D_1)} be in-neighbors of \(v\) in \(U_1^{(1)}\), ..., \(U_{\kappa(D_1)}^{(1)}\), respectively. Take a vertex \(x\) of \(D_1\). Then \(x \in U_1^{(1)}\) for some \(j \in \{1, 2, \ldots, \kappa(D_1)\}\) and, by (*) there are directed \((x, u_k)\)-walks of every length \(k - j + t \kappa(D_1)\) with \(t \geq N\) for each \(k = 1, \ldots, \kappa(D_1)\). Thus \(v\) is an \(m\)-step prey of \(x\) for each \(m \geq N\kappa(D_1) + 1\). Since \(x\) is arbitrarily chosen, \(C(D^m)\) is the union of two complete graphs whose vertex sets are \(V(D_1)\) and \([v]\) for each \(m \geq N\kappa(D_1) + 1\) and so \(K_{|V(D_1)|} \cup [v]\) is the limit of \(\{C(D^m)\}_m=1^\infty\).

We show the ‘only if’ part. Suppose that \(|\{i \mid U_1^{(1)}(i) \cap N_D(v) \neq \emptyset\}| = t\) for some \(t \in \{2, \ldots, \kappa(D_1) - 1\}\). Then there exists \(j\) such that \(v\) has in-neighbors in \(U_j^{(1)}\) and \(U_{j+r}^{(1)}\) but no in-neighbor in \(U_{j+1}^{(1)}\) where \(r \in \{2, 3, \ldots, \kappa(D_1) - 1\}\). Take a vertex \(u\) in \(U_j^{(1)}\) and a vertex \(w\) in \(U_{j+r}^{(1)}\). Then, by (*), \(v\) is a \((\kappa(D_1) + 1)\)-step common prey of \(u\) and \(w\) for each \(t \geq N\). Thus \(u\) and \(w\) are adjacent in \(C(D^t\kappa(D_1)+1)\) for each \(t \geq N\). However, \(u\) and \(w\) are not adjacent in \(C(D^{\kappa(D_1)+2})\) for any positive integer \(t \geq N\). To show it, note that \(v\) is the only possible \(m\)-step common prey of \(u\) and \(w\) for any integer \(m\) and so suppose that \(v\) is a \((\kappa(D_1) + 2)\)-step prey of \(u\) for some positive integer \(t \geq N\). We will reach a contradiction. By our assumption, there is a directed \((u, v)\)-walk of length \(\kappa(D_1) + 2\) in \(D\). The vertex immediately followed by \(v\) on the walk must belong to \(U_{j+1}^{(1)}\), which contradicts our assumption that \(v\) does not have an in-neighbor in \(U_{j+1}^{(1)}\). Thus \(v\) cannot be a \((\kappa(D_1) + 2)\)-step prey of \(u\) for any positive integer \(t \geq N\). Therefore \(u\) and \(w\) are not adjacent in \(C(D^{\kappa(D_1)+2})\) for any positive integer \(t \geq N\). Hence we can conclude that \(\{C(D^m)\}_m=1^\infty\) does not converge. \(\square\)

If \(D_2\) is nontrivial, then \(\{C(D^m)\}_m=1^\infty\) converges by Theorem 2.1. Thus we have completely characterized a digraph \(D\) with exactly two strong components for which \(\{C(D^m)\}_m=1^\infty\) converges.

Theorem 3.5. Let \(D\) be a weakly connected digraph with exactly two strong components \(D_1\) and \(D_2\) and without arc from \(D_2\) to \(D_1\). Then \(\{C(D^m)\}_m=1^\infty\) converges if and only if \(D\) satisfies one of the following:

(i) \(D_2\) is nontrivial.

(ii) \(D_2\) is trivial and, for the vertex \(v\) of \(D_2\), \(|\{i \mid U_1^{(1)}(i) \cap N_D(v) \neq \emptyset\}| = 1\) or \(\kappa(D_1)\).

From the proof of Proposition 3.4 and Theorem 3.5, we obtain the following:

Corollary 3.6. Let \(A\) be a Boolean \((0, 1)\)-matrix in the following form:

\[
\begin{bmatrix}
A_1 & F \\
O & A_2
\end{bmatrix}
\]

where \(O\) is a zero matrix, \(F\) is a nonzero matrix, and \(A_1\) and \(A_2\) are irreducible. Then \(\{\Gamma(A^m)\}_m=1^\infty\) converges if and only if one of the following holds:

(i) \(A_2\) has order at least 2.

(ii) \(A_2\) has order 1 and there exists a permutation matrix \(P\) such that

\[
PAP^T = \begin{bmatrix}
A_{12} & 0 & 0 & \cdots & 0 & 0 \\
0 & A_{23} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A_{\kappa(D_1)-2\kappa(D_1)-1} & * \\
* & 0 & 0 & \cdots & 0 & A_{\kappa(D_1)-1\kappa(D_1)} \\
0 & 0 & 0 & \cdots & 0 & A_2
\end{bmatrix}
\]
Lemma 3.7. Let G be an expansion of some bipartite graph B for some vertices u are edges of B. Proof. \(z \) vertices w of matrix give in (4) where D each vertex of x, y, z is nontrivial. Let which is obtained by substituting I if D to make clear that k is trivial, then 1 is nontrivial, then or each of $A_{12}, A_{23}, A_{k(D_1) - 1, k(D_1)}$. Moreover, the limit of $\{\Gamma(A^m)\}^\infty_{m=1}$ is a JBD matrix.

We now examine the structure of $\{\Gamma(A^m)\}^\infty_{m=1}$ when it converges where A is a Boolean $(0, 1)$-matrix given in (4) where F is a nonzero matrix. If A_2 is a trivial matrix, then we presented the limit of $\{\Gamma(A^m)\}^\infty_{m=1}$ in Corollary 3.6. Thus in the following, we find the limit when A_2 is nontrivial. To do so, we find the limit of $\{C(D^m)\}^\infty_{m=1}$ where D is the digraph of A and need the following useful notions.

Given a bipartite $B = (X, Y)$, we construct a supergraph of B as follows. We write each edge of B in the arc form (x, y) to make clear that $x \in X$ and $y \in Y$. Then we replace each vertex v with a complete graph G_v (of any size) so that G_v, and G_w are vertex-disjoint if $v \neq w$, and join each vertex of G_v and each vertex of G_w whenever either (x, y) is an edge of B or there exists $z \in Y$ such that (x, z) and (y, z) are edges of B. We say that the resulting graph D is an expansion of B. (See Fig. 2 for an illustration.)

Lemma 3.7. Let G be an expansion of some bipartite graph $B = (X, Y)$. Then G has only complete components if and only if for each vertex $x \in X$, the degree of x is at most one in B.

Proof. We show the ‘if’ part by contradiction. Suppose that there exist vertices x, y, z such that xy and xz are edges of G but y is not adjacent to z in G. Let G_u, G_y, and G_w be the complete graphs replacing vertices u, v, and w of B containing x, y, z, respectively. By definition, u, v, and w are distinct. Since y and z are not adjacent while x is adjacent to both y and z, it is true that $u \in X$. Then, since B is bipartite, v and w belong to Y. Now, by definition, u is adjacent to v and w and we reach a contradiction.

To show the ‘only if’ part, suppose that G has only complete components and there exists a vertex $u \in X$ which has two neighbors v, w in Y. Then, by definition, no vertex of G_v is joined to any vertex of G_w. Take a vertex $x \in G_u$, a vertex $y \in G_v$, and a vertex $z \in G_w$. Then, by definition, x is adjacent to y and z in G and so x, y, z belong to the same component. Since G has only complete components by our assumption, y and z are adjacent in G, a contradiction. \(\square \)

Definition 3.8. We take a weakly connected digraph D with exactly two strong components D_1 and D_2 where D_2 is nontrivial. Let $I(D) = \{(k, l) \mid (x, y) \in A(D) \text{ for some } x \in U_k^{(1)}, y \in U_l^{(2)}\}$. Let $B_D = (Z_{\kappa(D_1)}, Z_{\kappa(D_2)})$ be the bipartite graph defined as follows. If D_1 is nontrivial, then B_D has an edge (i, j) if and only if $i \equiv k + 1 + p \pmod{\kappa(D_1)}$ and $j \equiv l + p \pmod{\kappa(D_2)}$ for some $(k, l) \in I(D)$ and some integer p. If D_1 is trivial, then B_D has an edge (i, j) if and only if $j \equiv l - 1 \pmod{\kappa(D_2)}$ for some $(1, l) \in I(D)$, which is obtained by substituting $p = -1$ and $k(D_1) = 1$ in the nontrivial case.

We note that when we consider an edge (x, y) of B_D, the first component and the second component are reduced modulo $\kappa(D_1)$ and $\kappa(D_2)$, respectively. Then following is true.

Lemma 3.9. Let D be a weakly connected digraph with exactly two strong components D_1 and D_2 where D_2 is nontrivial. Then (i, j) is an edge of B_D if and only if there exists a (u, v)-walk of length $2\kappa(D_1)\kappa(D_2)$ for some vertices $u \in U_i^{(1)}$ and $v \in U_j^{(2)}$ and for some positive integer s.

Fig. 2. A bipartite graph B and an expansion G of B.

So that the rows containing nonzero elements of F' intersect exactly one of $A_{12}, A_{23}, \ldots, A_{\kappa(D_1) - 1, \kappa(D_1)}$ or each of $A_{12}, A_{23}, \ldots, A_{\kappa(D_1) - 1, \kappa(D_1)}$. Moreover, the limit of $\{\Gamma(A^m)\}^\infty_{m=1}$ is a JBD matrix.
Proof. For simplicity, we denote $\kappa(D_1)\kappa(D_2)$ by λ. To show the 'only if' part, suppose that (i, j) is an edge of B_D. By definition, for some integer p and for some $(k, l) \in I(D)$,

$$i \equiv k + 1 + p \pmod{\kappa(D_1)}, \quad j \equiv l + p \pmod{\kappa(D_2)}.$$

We define nonnegative integers p_1 and p_2 as follows. There exists a positive integer s such that both $s\lambda - p - 1$ and $s\lambda + p$ are positive integers. If D_1 is trivial, then let $p_1 = 0$ and $p_2 = 2s\lambda + p$ (note that $p = -1$). If D_1 is nontrivial, then let $p_1 = s\lambda - p - 1$ and $p_2 = s\lambda + p$.

Since $(k, l) \in I(D)$, there exist vertices $x \in U_k^{(1)}$ and $y \in U_l^{(2)}$ such that (x, y) is an arc of D. If D_1 is trivial, then let $u = x$ and then $Q := u$ is a (u, x)-walk of length $p_1 = 0$. Suppose that D_1 is nontrivial. Since D_1 is a nontrivial strongly connected digraph, any vertex in D_1 has an in-neighbor in D_1 and so there is a directed (u, x)-walk Q of length p_1 for some $u \in V(D_1)$. Since $x \in U_k^{(1)}$, it is true that $u \in U_k^{(1)}$. However,

$$k - p_1 \equiv (i - p - 1) - (s\lambda - p - 1) \equiv i \pmod{\kappa(D_1)}.$$

Therefore $u \in U_k^{(1)}$.

Since D_2 is nontrivial and strongly connected D_2 has a directed (y, v)-walk R of length p_2 for some $v \in V(D_2)$. Therefore $y \in U_l^{(2)}$. However,

$$l + p_2 \equiv (j - p) + (ks\lambda + p) \equiv j \pmod{\kappa(D_2)},$$

where $k = 1$ if D_1 is nontrivial and $k = 2$ if D_1 is trivial. Thus $v \in U_l^{(2)}$.

To show the 'if' part, suppose that there exists a directed (u, v)-walk Q of length $2s\lambda$ for some vertices $u \in U_i^{(1)}$ and $v \in U_j^{(2)}$ and for some positive integer s. The walk Q contains a unique arc (w, z) such that $w \in V(D_1)$ and $z \in V(D_2)$ since there is no arc from a vertex in D_2 to a vertex in D_1. Then $w \in U_r^{(1)}$ and $z \in U_s^{(2)}$ for some $r \in \{1, 2, \ldots, \kappa(D_1)\}$ and some $s \in \{1, 2, \ldots, \kappa(D_2)\}$. By definition, $(r, s) \in I(D)$. Let ℓ_1 and ℓ_2 be the lengths of (u, w)-section of Q and (z, v)-section of Q, respectively. Then

$$i + \ell_1 \equiv r \pmod{\kappa(D_1)}, \quad j - \ell_2 \equiv s \pmod{\kappa(D_2)}.$$

Since $\ell_1 + \ell_2 + 1 = 2s\lambda$, the first congruence relation is equivalent to $i + (2s\lambda - \ell_2 - 1) \equiv r \pmod{\kappa(D_1)}$ and so $i - \ell_2 - 1 \equiv r \pmod{\kappa(D_1)}$. Therefore

$$i \equiv r + \ell_2 + 1 \pmod{\kappa(D_1)}, \quad j \equiv s + \ell_2 \pmod{\kappa(D_2)}.$$

By definition, (i, j) is an edge of B_D. □

Now we are ready to present the limit of $\{\Gamma(A^m)\}_{m=1}^{\infty}$ if it exists for a matrix A given in (4) when F is a nonzero matrix and A_2 has order at least 2, that is, $D(A_2)$ is a nontrivial strong component of $D(A)$:

Theorem 3.10. Let D be a weakly connected digraph with two strong components D_1 and D_2 such that no arc goes from D_2 to D_1, D_2 is nontrivial, and $|C(D^m)|_{m=1}^{\infty}$ converges. Then the limit of $|C(D^m)|_{m=1}^{\infty}$ is an expansion of the bipartite graph B_D defined in Definition 3.8.

Proof. Let G be the limit of $|C(D^m)|_{m=1}^{\infty}$. By Theorem 3.2, complete graphs whose vertex sets are $U_k^{(1)}$, $U_k^{(2)}$, respectively, are subgraphs of G.

Since there is no arc from a vertex in D_2 to a vertex in D_1, for any positive integer m, an m-step common prey of two vertices of $V(D_2)$ is in D_2 and so the union of complete graphs whose vertex sets are $U_1^{(2)}, \ldots, U_{\kappa(D_2)}^{(2)}$, respectively, is an induced subgraph of G by Theorem 2.3. Therefore, to show that G is an expansion of B_D, it is sufficient to prove the following:

(i) $x \in U_i^{(1)}$ and $y \in U_j^{(2)}$ are adjacent in G if and only if (i, j) is an edge of B_D.

(ii) For distinct i and j, $x \in U_i^{(1)}$ and $y \in U_j^{(1)}$ are adjacent in G if and only if (i, h) and (j, h) are edges of B_D for some $h \in \mathbb{Z}_{\kappa(D_2)}$.

For simplicity, we denote $\kappa(D_1)\kappa(D_2)$ by λ.

To show (i), suppose that $x \in U_i^{(1)}$ and $y \in U_j^{(2)}$ are adjacent in G. Then there exist an integer s and a $2s\lambda$-step common prey z of x and y in D, which implies that there exists an (x, z)-walk Q of length $2s\lambda$ in D. On the other hand, since z is a $2s\lambda$-step prey of y, it is true that $z \in V(D_2)$. Furthermore, since $2s\lambda$ is a multiple of λ, $z \in U_i^{(2)}$. By Lemma 3.9, (i, j) is an edge of B_D.

Suppose that (i, j) is an edge of B_D. Take vertices $x \in U_i^{(1)}$ and $y \in U_j^{(2)}$. By Lemma 3.9, there exists a (u, v)-walk Q of length $2s\lambda$ for some vertices $u \in U_i^{(1)}$ and $v \in U_j^{(2)}$ and some positive integer s. Since any directed (x, u)-walk belongs to D_1, the length of a directed (x, u)-walk is congruent to 0 modulo $\kappa(D_1)$. Then there exists a directed (x, u)-walk S of length $s'\lambda$ for some integer s' (if D_1 is trivial then $s' = 0$). Since D_2 is nontrivial and $\kappa(D_2)$ divides λ, by Lemma 3.3, for some integer N, there exist a directed (v, y)-walk T of length $N\lambda$, and a directed (v, y)-walk R of length $(2s + s' + N)\lambda$. Since SQT is a directed (v, y)-walk of length $(2s + s' + N)\lambda$, ν is a $(2s + s' + N)\lambda$-step common prey of x and y in D, and so x and y are adjacent in G. Hence (i) holds.

Now we show that (ii) holds. Take distinct i and j in $\{1, \ldots, \kappa(D_1)\}$. To prove the ‘if’ part, suppose that (i, h) and (j, h) are edges of B_D for some $h \in \mathbb{Z}_{\kappa(D_2)}$. By Lemma 3.9, there exist a directed (u_1, v_1)-walk S_1 of length $2s_1\lambda$ and a directed (u_2, v_2)-walk S_2 of length $2s_2\lambda$ for some positive integers s_1 and s_2 and some vertices $u_1 \in U_i^{(1)}$, $u_2 \in U_j^{(1)}$, $v_1, v_2 \in U_h^{(2)}$. Take two vertices $x \in U_i^{(1)}$ and $y \in U_j^{(1)}$. Note that assumption $i \neq j$ implies that D_1 is nontrivial. Therefore both D_1 and D_2 are nontrivial, we may apply Lemma 3.3 to D_1 and D_2, respectively, to have integers N_1 and N_2 satisfying the following. Since v_1, v_2 belong to the same set of imprimitivity, there exist a directed (v_1, v_2)-walk T_1 of length $(2s_1 + N_2)\lambda$ and a directed (v_2, v_3)-walk T_2 of length $(2s_1 + N_2)\lambda$. Then S_1T_1 is a directed (u_1, v_2)-walk of length $(2s_2 + 2s_1 + N_2)\lambda$ and S_2T_2 is a directed (u_2, v_3)-walk of length $(2s_2 + 2s_1 + N_2)\lambda$. Take any integer $t \geq N_1$. Then, since x, u_1 belong to the same set of imprimitivity, there exists a directed (x, u_1)-walk Q_1 of length $t\lambda$. For the same reason, there exists a directed (y, u_2)-walk Q_2 of length $t\lambda$. Now $Q_1S_1T_1$ is a directed (x, v_2)-walk of length $(2s_1 + 2s_2 + N_1 + t)\lambda$ and $Q_2S_2T_2$ is a directed (y, v_3)-walk of length $(2s_1 + 2s_2 + N_2 + t)\lambda$. Thus v_2 is a $(2s_1 + 2s_2 + N_2 + t)\lambda$-step common prey of x and y, and hence x and y are adjacent in G.

To show the ‘only if’ part, suppose that $x \in U_i^{(1)}$ and $y \in U_j^{(1)}$ are adjacent in G. Then they have a $2s\lambda$-step common prey z in $V(D_2)$ for some integer s, that is, there exist a directed (x, z)-walk and a directed (y, z)-walk of length $2s\lambda$. Since $z \in V(D_2)$, it holds that $z \in U_i^{(2)}$ for some $h \in \{1, 2, \ldots, \kappa(D_2)\}$. By Lemma 3.9, (i, h) and (j, h) are edges of B_D. □

We can easily check that Theorem 3.10 is equivalent to the following:

Corollary 3.11. Let $A \in B_n$ be a matrix such that for a permutation matrix P of order n,

$$P \text{AP}^T = \begin{bmatrix} A_1 & F \\ O & A_2 \end{bmatrix}$$
where O is a zero matrix,

$$
A_1 = \begin{bmatrix}
O & A_{12} & 0 & \cdots & 0 \\
O & 0 & A_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
O & 0 & O & \cdots & A_{k(D_1)-1,k(D_1)} \\
A_{k(D_1)1} & 0 & 0 & \cdots & 0
\end{bmatrix},
A_2 = \begin{bmatrix}
0 & B_{12} & 0 & \cdots & 0 \\
0 & 0 & B_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & B_{k(D_2)-1,k(D_2)} \\
B_{k(D_2)1} & 0 & 0 & \cdots & 0
\end{bmatrix},
$$

and A_2 has order at least two, and F is a nonzero matrix,

$$
F = \begin{bmatrix}
F_{11} & F_{12} & F_{13} & \cdots & F_{1k(D_2)} \\
F_{21} & F_{22} & F_{23} & \cdots & F_{2k(D_2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
F_{k(D_1)-1,1} & F_{k(D_1)-1,2} & F_{k(D_1)-1,3} & \cdots & F_{k(D_1)-1,k(D_2)} \\
F_{k(D_1)1} & F_{k(D_1)2} & F_{k(D_1)3} & \cdots & F_{k(D_1)k(D_2)}
\end{bmatrix}.
$$

Then $\{\Gamma(A^m)\}_{m=1}^{\infty}$ converges to a matrix A' such that

$$
PA'P^T = \begin{bmatrix}
C_1 & F' \\
F'^T & C_2
\end{bmatrix}
$$

where

$$
C_1 = \begin{bmatrix}
J & C_{12} & C_{13} & \cdots & C_{1k(D_1)} \\
C_{21} & J & C_{23} & \cdots & C_{2k(D_1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{k(D_1)-1,1} & C_{k(D_1)-1,2} & C_{k(D_1)-1,3} & \cdots & C_{k(D_1)-1,k(D_1)} \\
C_{k(D_1)1} & C_{k(D_1)2} & C_{k(D_1)3} & \cdots & J
\end{bmatrix},
C_2 = \begin{bmatrix}
J & 0 & 0 & \cdots & 0 \\
0 & J & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & J
\end{bmatrix}.
$$

J represents a matrix of an appropriate size with all the elements 1; $C_{ij} = C_{ji} = J$ if $F'_{ik} = F'_{jk} = J$ for some $k \in \{1, \ldots, \kappa(D_2)\}$ and $C_{ij} = C_{ji} = 0$ otherwise; $F'_{ij} = J$ if one of the following holds:

- A_1 has order at least two and $F_{k,l} \neq O$ for some integers k, l satisfying $i \equiv k + p + 1 \pmod{\kappa(D_2)}$ and $j \equiv l + p \pmod{\kappa(D_2)}$ for some integer p,
- A_1 has order one and $F_{1l} \neq O$ for some integer l such that $j \equiv l - 1 \pmod{\kappa(D_2)}$.

and $F_{ij} = 0$ otherwise.

Let A be a matrix given in (4) where F is nonzero and D be the digraph of A. If D_1 is trivial, D_2 is nontrivial and B_D has at least two edges, then any expansion of B_D cannot be the union of complete subgraphs and so the limit of $\{D^{(m)}\}_{m=1}^{\infty}$ is not the union of complete subgraphs by Theorem 3.10, that is, the limit of $\{\Gamma(A^m)\}_{m=1}^{\infty}$ cannot be a JBD matrix. If D_2 trivial and $\{D^{(m)}\}_{m=1}^{\infty}$ converges, then the limit of $\{\Gamma(A^m)\}_{m=1}^{\infty}$ is always the union of complete subgraphs by Proposition 3.4, that is, the limit of $\{\Gamma(A^m)\}_{m=1}^{\infty}$ is a JBD matrix. In the following, we characterize a matrix A given in (4) for which the limit graph of $\{\Gamma(A^m)\}_{m=1}^{\infty}$ is a JBD matrix when F is a nonzero matrix and both A_1 and A_2 are nontrivial, that is, we characterize a digraph D with exactly two strong components both of which are nontrivial and for which the limit graph of $\{C(D^{(m)})\}_{m=1}^{\infty}$ has only complete components.

Theorem 3.12. Let D be a weakly connected digraph with exactly two strong components D_1 and D_2 both of which are nontrivial and without arc from D_2 to D_1. Suppose that $\{C(D^{(m)})\}_{m=1}^{\infty}$ converges to a graph G. Then G is the union of complete subgraphs if and only if $\kappa(D_2)$ divides $\kappa(D_1)$ and $i - j \equiv i' - j'$ (mod $\kappa(D_2)$) for any $(i, j), (i', j') \in I(D)$.

Proof. As we have shown in the proof of Theorem 3.10, G is an expansion of the bipartite graph B_D defined in Definition 3.8. For convenience, let $B_D = (X, Y)$. Suppose that $\kappa(D_2)|\kappa(D_1)$ and $j - i \equiv j' - i'$ (mod $\kappa(D_2)$) for any $(i, j), (i', j') \in I(D)$. Take a vertex $a \in X$. If a has no neighbor in B_D, then its degree is zero. Suppose that a has a neighbor in B_D. Let (a, b) and (a, c) are edges of B_D. Then by definition, for some $(i, j), (i', j') \in I(D)$, for some integers l, l',

\[
a \equiv i + l + 1 \pmod{\kappa(D_1)}, \quad b \equiv j + l \pmod{\kappa(D_2)},
\]

\[
a \equiv i' + l' + 1 \pmod{\kappa(D_1)}, \quad c \equiv j' + l' \pmod{\kappa(D_2)}.
\]

Since $\kappa(D_2)|\kappa(D_1)$,

\[
a \equiv i + l + 1 \equiv i' + l' + 1 \pmod{\kappa(D_2)},
\]

and so $l - l' \equiv i' - i \pmod{\kappa(D_2)}$. Therefore

\[
b - c \equiv (j + l) - (j' + l') \equiv (j - j') + (l - l') \equiv (j - j') + (i' - i) \equiv 0 \pmod{\kappa(D_2)}.
\]

Therefore, the vertex a has only one neighbor in B_D. Hence, by Lemma 3.7, G is the union of complete subgraphs.

Now suppose that G is the union of complete subgraphs. Then, by Lemma 3.7, the degree of each vertex in X is at most one in B_D. Since we have assumed that the underlying graph of D is connected at the beginning of this section, B_D has an edge and so there exists a vertex $a \in X$ such that the degree of a is one. Then (a, b) is an edge of B_D and so for some $(i, j) \in I(D)$ and some integer l,

\[
a \equiv i + l + 1 \pmod{\kappa(D_1)}, \quad b \equiv j + l \pmod{\kappa(D_2)}.
\]

Since $(i, j) \in I(D)$, it is true that $(i + l + \kappa(D_1) + 1, j + l + \kappa(D_1))$ is an edge of B_D by the definition of B_D. Since $i + l + \kappa(D_1) + 1 \equiv a \pmod{\kappa(D_1)}$, it holds that $(a, j + l + \kappa(D_1))$ is an edge of B_D. Since the degree of a is one, b is the unique neighbor of a in B_D and so $j + l + \kappa(D_1) \equiv b \pmod{\kappa(D_2)}$. Thus $j + l + \kappa(D_1) \equiv j + l \pmod{\kappa(D_2)}$ and so $\kappa(D_1) \equiv 0 \pmod{\kappa(D_2)}$. Therefore $\kappa(D_2)|\kappa(D_1)$.

Take $(i, j), (i', j') \in I(D)$. Without loss of generality, we may assume that $i' > i$. Since $(i, j) \in I(D)$, by the definition of B_D, $(i + (i' - i) + 1, j + (i' - i))$ is an edge of B_D and so is $(i' + 1, j + i' - i)$. In addition, $(i' + 1, j')$ is an edge of B_D as $(i', j') \in I(D)$. Therefore both $(i' + 1, j + i' - i)$ and $(i' + 1, j')$ are edges of B_D. Since each vertex in X of B_D has degree at most one, $j + (i' - i) \equiv j' \pmod{\kappa(D_2)}$. Thus $i - j \equiv i' - j' \pmod{\kappa(D_2)}$. \[\square\]

As a corollary of Theorem 3.12, we obtain the following:
Corollary 3.13. Let $A \in B_n$ be a matrix such that for a permutation matrix P of order n,

$$PAP^T = \begin{bmatrix} A_1 & F \\ O & A_2 \end{bmatrix}$$

where

$$A_1 = \begin{bmatrix} 0 & A_{12} & 0 & \cdots & 0 \\
0 & 0 & A_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{k(D_1)-1,k(D_1)} \\
A_{k(D_1)1} & 0 & 0 & \cdots & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & B_{12} & 0 & \cdots & 0 \\
0 & 0 & B_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & B_{k(D_2)-1,k(D_2)} \\
B_{k(D_2)1} & 0 & 0 & \cdots & 0 \end{bmatrix},$$

both A_1 and A_2 have order at least two, O is a zero matrix, and F is a nonzero matrix.

Suppose that $\{\Gamma(A^m)\}_{m=1}^{\infty}$ converges to a matrix A'. Then A' is a JBD matrix if and only if $\kappa(D_2)$ divides $\kappa(D_1)$ and $i - j \equiv i' - j' \pmod{\kappa(D_2)}$ whenever $F_{i,j} \neq 0$ and $F_{i',j'} \neq 0$.

4. Concluding remarks

In this paper, we investigated the convergence and the limit of the matrix sequence $\{\Gamma(A^m)\}_{m=1}^{\infty}$ for a matrix A in B_n whose digraph D has at most two strong components and, among such matrices, characterized a matrix A for which the limit of $\{\Gamma(A^m)\}_{m=1}^{\infty}$ is a JBD matrix. We would like to see if our results can be generalized for an arbitrary matrix in B_n. When a digraph D has quite many strong components, vertices in the strong component which has only outgoing arcs in the condensation of D have much more choices for prey and so the characterization of its limit, if it exists, appears to be more difficult.

We mentioned earlier that studying the matrix sequence $\{\Gamma(A^m)\}_{m=1}^{\infty}$ for a matrix A in B_n is equivalent to studying the graph sequence $\{C(D^m)\}_{m=1}^{\infty}$ and that $\{C(D^m)\}_{m=1}^{\infty}$ is actually the sequence of m-step competition graphs of D. In this context, we propose to investigate the graph sequence obtained by other variants of competition graph (see [4,9,15]).

Acknowledgments

We wish to acknowledge the anonymous referee for invaluable suggestions leading to improvements in the presentation of the results.

References