
Approximate Computing

An effective likelihood-free method with statistical 
guarantees

Ryan Gross

Suzanne Thornton

Dr. Minge Xie

DIMACS REU 2018



Madison Square Park data set

Data

• 2015-2017 entry/exit counts per day per location

The Problem

• 2 of 9 entrances equipped with counters at a time

• Lost data from “transition days” 

• Time of day, weather patterns, events not accounted for

Goal

• Estimate total number of park users over a given time 
period



The Process

• Initial data analysis

• Determine summary stats

Data Cleanup/ 
Investigation

• Poisson point process, stochastic matrix

• Multiscale (micro-macro)
Model

• Replicate missingness

• Determine simulated counts
Run simulations

• ABC, ACC methods

• Compare simulation to data

Approximate 
Computing

• Adjust  model

• Update summary stats

Refine and 
repeat



Initial Data 
Analysis

Summary 
Statistics

Compare 
distributions 
per location

Determine 
time step

Evaluate 
outliers/ 

errors
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Locations Avg. Daily Entry Avg. Daily Exit Avg. Daily Total

Seward West 4868 4376 9088

24th/5th 3846 3267 7113

25th/5th 3871 2831 6702

26th/5th 3365 2175 5540

26th/Madison 3116 3304 6420

25th/Madison 5905 4403 10307

24th/Madison 4484 4339 8823

23rd/Madison 2143 1772 3915

Seward East 3321 2907 6228



Distributions/Densities



Time Step

• Use weekly data
• Daily: too much 

variation

• Monthly: too few 
observations



Counter Errors

• Entry counts generally higher 
than exit counts

• All locations, periods of time

• Largely due to outliers

 Must account for in simulations
• Separate entry/exit data in 

comparisons



Summary Statistics

Locations Rate In Rate Out

Seward West 0.14 0.15

24th/5th 0.11 0.11

25th/5th 0.11 0.10

26th/5th 0.10 0.07

26th/Madison 0.09 0.11

25th/Madison 0.17 0.15

24th/Madison 0.13 0.15

23rd/Madison 0.06 0.06

Seward East 0.10 0.10

• Relative rate of entry/exit (weekly basis)
• 18 parameters total
• Used in ACC method
• Later: look to decrease number of parameters

• Go back to initial analysis to find relationships 



Simple Model 
Example

• Time period: monthly  (April-June)
• Outliers/errors: ignored
• Summary statistic: mean
• Estimation method: Gaussian kernel

Sum 39599 visitors in May



Modeling
Stochastic model, Spatial point process, Multiscale model



Stochastic Matrix

 Based on square grid structure and uses 3x3 transition matrix 
for individual movements

 Updates probabilities based on status of surrounding cells 
(obstacles, other pedestrians)

 Issues: 
 Only a microscopic look at individual pedestrians

 No data to determine parameters for the model



Spatial Poisson point process

 Spatial point process is a random pattern of points (e.g. pedestrians) 
in d-dimensional space 

 Poisson distribution: models arrival times

 Issues: 
 Macroscopic view does not account for movement within the park

 Too simplified for our park data (many parameters, missing data)



Multiscale (micro-macro) model

 Microscopic model:
 Tracks pedestrians individually

 System of ordinary differential equations

 Discrete 

 Macroscopic model:
 Tracks crowd density

 Velocity vector field

 Continuous

 Key: combine them into computational algorithm
 We have the code!



The Code

 Source: Dr. Piccoli of Rutgers—Camden 

 Models traffic flow using PDEs

 Produces velocity vector field

• Individual vectors correspond to pedestrian 
movement

• Two populations model inward and outward flow



Applying multiscale model to Madison Square Park



Simulations

Still to come:

 Adjust rates of inflow/outflow by entrance 

 Run the simulations

 Calculate counts

 ABC/ACC method



Approximate Computing: 
ABC method

The algorithm:

1. Generate  θ1,...,θN ~π(θ);
 Use prior assumptions to come up with a set 

of parameters

2. For each i, simulate x(i) = {x1
(i),...,xN

(i)} 
from Mθ;
 Now using the model, run simulations to 

produce a simulated dataset

3. For each i, accept θi if ρ(S*n, sobs) ≤ εn

 Compare simulated data to observed data 
(using summary stats). If they are close 
enough, accept θi. If not, discard θi and 
return to step 1



Approximate Computing: 
ACC method

The algorithm:

1. Generate θ1,...,θN∼ rn(θ);
 Instead of prior assumption, free to 

select data-dependent distribution rn

from which parameters are generated

2. and 3. identical to ABC method

 Key: Data-dependent ACC has 
computational advantage over ABC
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