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Madison Square Park data set

Data

• 2015-2017 entry/exit counts per day per location

The Problem

• 2 of 9 entrances equipped with counters at a time

• Lost data from “transition days” 

• Time of day, weather patterns, events not accounted for

Goal

• Estimate total number of park users over a given time 
period



The Process

• Initial data analysis

• Determine summary stats

Data Cleanup/ 
Investigation

• Poisson point process, stochastic matrix

• Multiscale (micro-macro)
Model

• Replicate missingness

• Determine simulated counts
Run simulations

• ABC, ACC methods

• Compare simulation to data

Approximate 
Computing

• Adjust  model

• Update summary stats

Refine and 
repeat



Initial Data 
Analysis

Summary 
Statistics

Compare 
distributions 
per location

Determine 
time step

Evaluate 
outliers/ 

errors
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Locations Avg. Daily Entry Avg. Daily Exit Avg. Daily Total

Seward West 4868 4376 9088

24th/5th 3846 3267 7113

25th/5th 3871 2831 6702

26th/5th 3365 2175 5540

26th/Madison 3116 3304 6420

25th/Madison 5905 4403 10307

24th/Madison 4484 4339 8823

23rd/Madison 2143 1772 3915

Seward East 3321 2907 6228



Distributions/Densities



Time Step

• Use weekly data
• Daily: too much 

variation

• Monthly: too few 
observations



Counter Errors

• Entry counts generally higher 
than exit counts

• All locations, periods of time

• Largely due to outliers

 Must account for in simulations
• Separate entry/exit data in 

comparisons



Summary Statistics

Locations Rate In Rate Out

Seward West 0.14 0.15

24th/5th 0.11 0.11

25th/5th 0.11 0.10

26th/5th 0.10 0.07

26th/Madison 0.09 0.11

25th/Madison 0.17 0.15

24th/Madison 0.13 0.15

23rd/Madison 0.06 0.06

Seward East 0.10 0.10

• Relative rate of entry/exit (weekly basis)
• 18 parameters total
• Used in ACC method
• Later: look to decrease number of parameters

• Go back to initial analysis to find relationships 



Simple Model 
Example

• Time period: monthly  (April-June)
• Outliers/errors: ignored
• Summary statistic: mean
• Estimation method: Gaussian kernel

Sum 39599 visitors in May



Modeling
Stochastic model, Spatial point process, Multiscale model



Stochastic Matrix

 Based on square grid structure and uses 3x3 transition matrix 
for individual movements

 Updates probabilities based on status of surrounding cells 
(obstacles, other pedestrians)

 Issues: 
 Only a microscopic look at individual pedestrians

 No data to determine parameters for the model



Spatial Poisson point process

 Spatial point process is a random pattern of points (e.g. pedestrians) 
in d-dimensional space 

 Poisson distribution: models arrival times

 Issues: 
 Macroscopic view does not account for movement within the park

 Too simplified for our park data (many parameters, missing data)



Multiscale (micro-macro) model

 Microscopic model:
 Tracks pedestrians individually

 System of ordinary differential equations

 Discrete 

 Macroscopic model:
 Tracks crowd density

 Velocity vector field

 Continuous

 Key: combine them into computational algorithm
 We have the code!



The Code

 Source: Dr. Piccoli of Rutgers—Camden 

 Models traffic flow using PDEs

 Produces velocity vector field

• Individual vectors correspond to pedestrian 
movement

• Two populations model inward and outward flow



Applying multiscale model to Madison Square Park



Simulations

Still to come:

 Adjust rates of inflow/outflow by entrance 

 Run the simulations

 Calculate counts

 ABC/ACC method



Approximate Computing: 
ABC method

The algorithm:

1. Generate  θ1,...,θN ~π(θ);
 Use prior assumptions to come up with a set 

of parameters

2. For each i, simulate x(i) = {x1
(i),...,xN

(i)} 
from Mθ;
 Now using the model, run simulations to 

produce a simulated dataset

3. For each i, accept θi if ρ(S*n, sobs) ≤ εn

 Compare simulated data to observed data 
(using summary stats). If they are close 
enough, accept θi. If not, discard θi and 
return to step 1



Approximate Computing: 
ACC method

The algorithm:

1. Generate θ1,...,θN∼ rn(θ);
 Instead of prior assumption, free to 

select data-dependent distribution rn

from which parameters are generated

2. and 3. identical to ABC method

 Key: Data-dependent ACC has 
computational advantage over ABC
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