
∆-coloring in the graph streaming model

Pankaj Kumar Parth Mittal
Mentor: Dr Sepehr Assadi

REU 2020 1, Rutgers University

1Supported by CoSP, a project funded by European Union’s Horizon 2020
research and innovation programme, grant agreement No. 823748.



The streaming model

I Motivation: Many problems have interesting instances where
conventional algorithms use too much space.

I The setting:

I We have a small number of passes (typically 1 or O(1)) over
the input.

I Memory is limited to some inconvenient amount

I Examples:

I Median-finding (O(p) pass Õ(n1/p) space algorithms are
known).

I Counting distinct elements ((1 + ε)-approx in O(1/ε2 · log n)
space with constant probability of success known).



The streaming model

I Motivation: Many problems have interesting instances where
conventional algorithms use too much space.

I The setting:
I We have a small number of passes (typically 1 or O(1)) over

the input.

I Memory is limited to some inconvenient amount

I Examples:

I Median-finding (O(p) pass Õ(n1/p) space algorithms are
known).

I Counting distinct elements ((1 + ε)-approx in O(1/ε2 · log n)
space with constant probability of success known).



The streaming model

I Motivation: Many problems have interesting instances where
conventional algorithms use too much space.

I The setting:
I We have a small number of passes (typically 1 or O(1)) over

the input.
I Memory is limited to some inconvenient amount

I Examples:

I Median-finding (O(p) pass Õ(n1/p) space algorithms are
known).

I Counting distinct elements ((1 + ε)-approx in O(1/ε2 · log n)
space with constant probability of success known).



The streaming model

I Motivation: Many problems have interesting instances where
conventional algorithms use too much space.

I The setting:
I We have a small number of passes (typically 1 or O(1)) over

the input.
I Memory is limited to some inconvenient amount

I Examples:
I Median-finding (O(p) pass Õ(n1/p) space algorithms are

known).

I Counting distinct elements ((1 + ε)-approx in O(1/ε2 · log n)
space with constant probability of success known).



The streaming model

I Motivation: Many problems have interesting instances where
conventional algorithms use too much space.

I The setting:
I We have a small number of passes (typically 1 or O(1)) over

the input.
I Memory is limited to some inconvenient amount

I Examples:
I Median-finding (O(p) pass Õ(n1/p) space algorithms are

known).
I Counting distinct elements ((1 + ε)-approx in O(1/ε2 · log n)

space with constant probability of success known).



Graph problems in the streaming model

I Many graphs are too large to store in memory (eg. the
internet)

I Can we design algorithms that work with sub-linear (in the
number of vertices) space?

I No, even connectivity requires Ω(n) space.

I Semi-streaming model: Allow O(n · polylog(n)) space.

I A good survey is [2]



Graph problems in the streaming model

I Many graphs are too large to store in memory (eg. the
internet)

I Can we design algorithms that work with sub-linear (in the
number of vertices) space?

I No, even connectivity requires Ω(n) space.

I Semi-streaming model: Allow O(n · polylog(n)) space.

I A good survey is [2]



Graph problems in the streaming model

I Many graphs are too large to store in memory (eg. the
internet)

I Can we design algorithms that work with sub-linear (in the
number of vertices) space?

I No, even connectivity requires Ω(n) space.

I Semi-streaming model: Allow O(n · polylog(n)) space.

I A good survey is [2]



Graph problems in the streaming model

I Many graphs are too large to store in memory (eg. the
internet)

I Can we design algorithms that work with sub-linear (in the
number of vertices) space?

I No, even connectivity requires Ω(n) space.

I Semi-streaming model: Allow O(n · polylog(n)) space.

I A good survey is [2]



Graph problems in the streaming model

I Many graphs are too large to store in memory (eg. the
internet)

I Can we design algorithms that work with sub-linear (in the
number of vertices) space?

I No, even connectivity requires Ω(n) space.

I Semi-streaming model: Allow O(n · polylog(n)) space.

I A good survey is [2]



∆-coloring

I Let G = (V ,E ) be a graph, then c : V → C is a proper
coloring if for any {u, v} ∈ E , c(u) 6= c(v).

I For G with maximum degree ∆, ∆ + 1 coloring is easy (assign
arb. color to some vertex, then color rest “greedily”).

I If G is not a clique or an odd-cycle, then it can be ∆-colored
(Brook’s Theorem).



∆-coloring

I Let G = (V ,E ) be a graph, then c : V → C is a proper
coloring if for any {u, v} ∈ E , c(u) 6= c(v).

I For G with maximum degree ∆, ∆ + 1 coloring is easy (assign
arb. color to some vertex, then color rest “greedily”).

I If G is not a clique or an odd-cycle, then it can be ∆-colored
(Brook’s Theorem).



∆-coloring

I Let G = (V ,E ) be a graph, then c : V → C is a proper
coloring if for any {u, v} ∈ E , c(u) 6= c(v).

I For G with maximum degree ∆, ∆ + 1 coloring is easy (assign
arb. color to some vertex, then color rest “greedily”).

I If G is not a clique or an odd-cycle, then it can be ∆-colored
(Brook’s Theorem).



Our project

I It is known that randomized (∆ + 1)-coloring is possible in
Õ(n) space [1]

I With randomization, can we ∆-color graphs in Õ(n) space in
O(1) passes?



Our project

I It is known that randomized (∆ + 1)-coloring is possible in
Õ(n) space [1]

I With randomization, can we ∆-color graphs in Õ(n) space in
O(1) passes?



References

S. Assadi, Y. Chen, and S. Khanna.
Sublinear algorithms for (∆ + 1) vertex coloring.
In T. M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,
San Diego, California, USA, January 6-9, 2019, pages
767–786. SIAM, 2019.

A. McGregor.
Graph stream algorithms: a survey.
SIGMOD Rec., 43(1):9–20, 2014.


