Competition Graphs and Food Webs

Pratik Koirala
Mentor: Dr. Midge Cozzens
Overview

• Competition Graphs
• Interval Graphs
• Research Problem
• Direction of Research
Competition Graphs

• **Food Webs**: Vertices in a directed graph (digraph) are species in an ecosystem, **assume no cycles**.

Example: Graph D

```
grass  deer  wolf
```

Note: Edges are directed from prey to predator, energy flow.

• **Competition Graph**: For a digraph $D = (V, E)$, its corresponding competition graph: G is an undirected graph with vertex set V and there is an edge between two vertices if and only if they share a common prey.

Example: Graph G

```
   deer  rabbit
   wolf  hawk
   grass
```
Interval Graphs

• Each vertex can be assigned an interval on the real line.
• There is an edge between two vertices if and only if their corresponding intervals overlap.

Graph G Intervals corresponding to Graph G

deer rabbit grass deer
wolf hawk

• Some forbidden Subgraphs of Interval Graphs

C_4 K_{3+p}
Research Problem

• For a competition graph to be an interval graph, both it and its complement must be chordal (no cycles of size 4 or more). Why?

• Can we characterize the directed graphs whose corresponding competition graphs are interval graphs?

• Most directed graphs do not have competition graph which are interval graphs, yet statistically most actual food webs have interval competition graphs. What ecological characteristics of food webs lead to this?
Direction of research

• Computationally look at some large food webs
• Construct their competition graphs, and analyze their cycles
• Randomly generate food webs and analyze their cycles
• Conclusions