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Abstract. The correlation constant of a matrix, field, graph, or matroid ex-

plains how the edges in a graph or the column vectors in a vector space con-

figuration are correlated. Our goal is to study different matrices and matroids
and find correlation constants greater than 1 to improve the lower bound of

the correlation constant for any field F.

.

1. Introduction

. Let us start with M, a finite collection of vectors and bi, bij , b stand for the
number of bases for the column space of M that contain the distinct vector i,
the distinct vectors i and j, and the total number of bases for the column space
of M respectively. The formal definition of a correlation constant of a field F is

the supremum of
bbij
bibj

over all pairs of distinct vectors i and j in finite vector

configurations in vectors spaces over F.

The Complete Graphs Kn. The first complete graph we will analyze is K4. It
can be described by the vertex-edge incidence matrix below.

K4 =


1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1



5

1

3 4

6

2

Each row represents a vertex and each column represents an edge in the complete
graph. The entries of this matrix indicated that this will also be a directed graph.
If we look at all the entries of the second row we can analyze all the edges related
to the second vertex. Edge 1 is directed towards the second vertex because the
(2,1)-entry is -1. Edge’s 4 and 5 are directed away from the second vertex because
the (2,4) and (2,5)-entries are 1’s. The (i,j)-entries that are 0 indicate that there
are no edges incident on that vertex.
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The Rank and The Bases. First we will determine the rank of the matrix in
order to find the dimension of the column space. Let us choose to view each column
as a column vector and using Gaussian elimination we can see that the rank of the
matrix is 3, therefore we will find bases for the column space with 3 vectors.

This graph is represented over all the real numbers so after using Gaussian elim-
ination to determine all the possible bases we can see that each vector is included
in 8 bases. There is also a total of 16 bases.

Below, is the Hodge-Riemann form of the vector configuration of K4 from Huh’s
paper [1].

HR(K4) =


0 3 3 3 3 4
3 0 3 3 4 3
3 3 0 4 3 3
3 3 4 0 3 3
3 4 3 3 0 3
4 3 3 3 3 0


The entries of this matrix is described by

HR(M)ij =

{
0 if i = j,

bij if i 6= j.

Now that we have the various combinations of bi, bj and bij we can concoct a set
of potential correlation constants and take the supremum to find the correlation
constant of K4

sup

{
0,

3

4
, 1

}
= 1

2. Patterns of the correlation constant

Now we would like to ask ourselves, what essentially affects the correlation con-
stant? Does it depend on the characteristic of a field or is it an intrinsic property
of a field? [1]

Modular Arithmetic. Let us see how the correlation constant of K4 will be
affected if we were to calculate it in modulo 2. We will call Z the matrix representing
K4 over F2.

Z =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


Now that the (i,j)-entries of K4 are in modulo 2 we can calculate the rank of

Z and determine the bases for its column space. The rank of Z is 4 so we must
use Gaussian elimination to determine 4 linearly independent vectors that span the
column space. However, we must use Gaussian elimination via modulo 2 and from
that we can determine that there are no possible bases for the column space. The
correlation constant of K4 via modulo 2 is 0. From these observations we can see
that the correlation constant of K4 decreased when represented over F2.
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For the rest of this section we would like to answer the following questions:

(1) Is the correlation constant of every complete graph 1?
(2) Does the correlation constant always decrease with any complete graph

when represented over F2?
(3) Is the correlation constant affected when a complete graph has orientation?

Whether it is represented by an incidence matrix or an adjacency matrix?

We will start by answering the first question, and we will look at the incidence
matrix of K3 which is essentially a triangle.

K3 =

 1 0 −1
−1 1 0
0 −1 1


After repeating the same process as described earlier in this paper we can see that

the correlation constant is 3
4 . Now let us see how the correlation constant is affected

when this matrix is represented over F2. Let V denote the matrix representing K3

over F2

V =

1 0 1
1 1 0
0 1 1


We can see that the correlation constant of V is the same as K3, therefore we

can answer the second question. The correlation constant does not always decrease
when the matrix is represented over F2. Although this appeared to be a promising
pattern it is a lot more difficult to find one than it seems. Now let’s see what
happens when K4 and K3 are represented by an adjacency matrix.

Adjacency matrices are square matrices that represent undirected graphs with
0’s and 1’s as its entries. The dimensions of the adjacency matrix representing a
complete graph Kn is n× n. The following are the adjacency matrices for K4 and
K3.

K4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

,K3 =

0 1 1
1 0 1
1 1 0


Using the same process as before to calculate the bases we can see that the

correlation constant of these two matrices are 1. As you calculate the correlation
constant of more and more adjacency matrices representing complete graphs we
can see that it is always 1. Now that we have seen the incidence and adjacency
matrices for K4 and K3 we can answer questions 1 and 3. The correlation con-
stant of every complete graph Kn is always 1 when represented by an adjacency
matrix (undirected), but only sometimes when represented by an incidence matrix
(directed). This leads us to postulate that orientation and direction does affect the
correlation constant of a graph.

3. Interesting Matroids

Now that we have gained an understanding of what a correlation constant is, how
to calculate it, and its properties we can start to look at more complex matroids.
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Let us look at the following matroid S8 from Oxley’s book [2].

S8 =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 1



This matroid is only representable if and only if that field has characteristic
two, therefore it is represented over GF (2). We must now determine the correla-
tion constant of this matroid by using the previous processes, but with Gaussian
elimination via modulo 2. We will use Sage to easily calculate the bases of this
matroid [4].From this we can determine a set of potential correlation constants and

take the supremum of that set to get the correlation constant which is (48)(12)
(20)(28) = 36

35 .

We obtained these numbers when i = 4 and j = 8. This is the first correlation con-
stant we have seen greater than 1 so we have accomplished what we wanted to in
the abstract.

Our next matroid is called M4,2 which can be constructed from the conditions
set forth in Schröter’s paper [3]. This was the first matroid discovered by Seymour
and Welsh to have a correlation constant greater than 1.

M4,2 =


1 0 0 0 0 1 1 1
0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 1


Using Gaussian elimination via modulo 2 [4] we can see that the correlation

constant of this matroid is also 36
35 . We obtained these numbers when i = 1 and

j = 5. M4,2 and S8 are represented by two different matrices, so it is curious to
see that their correlation constants are the same. However, the first four columns
of each matrix were part of the I4 identity matrix which means the other 4 column
vectors are linear combinations of the first four.

4. Hypotheses and Conclusions

From what we have seen so far we can see that to find correlation constants
greater than 1 we do not have to construct large matrices, nor make the entries of
these matrices large. We have seen two examples of matrices completely comprised
of only 1’s and 0’s that involve the identity matrix and their correlation constants
were greater than 1. We now hope to find more matroids with correlation constants
greater than 1 and 36

35 to improve its lower bound. We have established a solid
background, found few patterns, and seen real examples of these special matroids.
We hope to find more and have the tools to do so.



MATROIDS AND THE CORRELATION CONSTANT 5

Special thanks to Professor Tarasca for his mentorship and introducing me to the
topic of matroids and the correlation constant. Special thanks to Lazaros Gallos
for involving me in the REU DIMACS program.

References

[1] J. Huh. Combinatorial applications of the Hodge-Riemann relations. ArXiv e-prints, November

2017.

[2] J. G. Oxley. Matroid theory. Oxford University Press, 2011.
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