Fair Coloring of Planar Cubic Graphs

presented by Pavel Klavík
pavel@klavik.cz

Faculty of Mathematics and Physics, Charles University in Prague

REU 2009
Definition (Planar cubic graph)

We call a graph

- **planar** if it can be drawn in the plane without crossing, and
- **cubic** if the degree of all the vertices is three.
Definition (Planar cubic graph)

We call a graph

- **planar** if it can be drawn in the plane without crossing, and
- **cubic** if the degree of all the vertices is three.
Definition (Coloring)

A \textit{k-coloring} is an assignment of \textit{k} different colors to the vertices of the graph.

Definition (Proper coloring)

A coloring is \textit{proper} if no two adjacent vertices have \textit{the same color}.

Figure: Proper coloring

Figure: Non-proper coloring
Definition (Coloring)

A *k*-coloring is an assignment of *k* different colors to the vertices of the graph.

Definition (Proper coloring)

A coloring is **proper** if no two adjacent vertices have the same color.
Theorem (Four color)

*Every planar graph has a *proper* 4-coloring.*

Definition (Fair coloring)

A proper 4-coloring of a cubic planar graph is *fair* if all the neighbors of each vertex have *distinct* colors.

Figure: Fair coloring

Figure: Non-fair coloring
Theorem (Four color)

Every planar graph has a proper 4-coloring.

Definition (Fair coloring)

A proper 4-coloring of a cubic planar graph is **fair** if all the neighbors of each vertex have **distinct** colors.

Figure: Fair coloring

Figure: Non-fair coloring
Problem

For a given cubic planar graph we want to decide if there exists a fair coloring of the graph.

Question

How difficult is such problem? Does there exist an efficient algorithm?

- Fair coloring of cubic graphs is hard.
- Fair-like coloring of subcubic planar graphs is also hard.
Problem

For a given cubic planar graph we want to decide if there exists a fair coloring of the graph.

Question

How difficult is such problem? Does there exist an efficient algorithm?

- Fair coloring of cubic graphs is hard.
- Fair-like coloring of subcubic planar graphs is also hard.
Problem

For a given cubic planar graph we want to decide if there exists a fair coloring of the graph.

Question

How difficult is such problem? Does there exist an efficient algorithm?

- Fair coloring of cubic graphs is hard.
- Fair-like coloring of subcubic planar graphs is also hard.
Problem

For a given cubic planar graph we want to decide if there exists a fair coloring of the graph.

Question

How difficult is such problem? Does there exist an efficient algorithm?

- Fair coloring of cubic graphs is hard.
- Fair-like coloring of subcubic planar graphs is also hard.
Observation

There exists no fair coloring for graph which contains the cycle C_5.

- By the pigeonhole principle at least one color is used twice.
Observation

There exists no fair coloring for graph which contains the cycle C_5.

- By the pigeonhole principle at least one color is used twice.
Question

Does the following graph have a fair coloring?
Question

Does the following graph have a fair coloring?
Any questions or suggestions?