Tetrises and Graph Coloring

(joke included)

Aneta Štastná, Ondřej Šplíchal
Erdős–Faber–Lovász conjecture - clique version

- If n complete graphs, each having exactly n vertices, have the property that every pair of complete graphs has at most one shared vertex, then the union of the graphs can be colored with n colors.

- Example: $n = 5$
Tetrises
New Perspective on EFL
Different perspectives on EFL

- EFL relational structure version
- b-coloring of tight bipartite graphs
- EFL assembling of tetrises
- EFL hypergraph version (edge coloring)
- EFL hypergraph version (vertex coloring)
- EFL clique version
- EFL set version
Tetris with maximal number of crossings T

- Each two cliques intersect in one vertex.
- No vertex belongs to more than 2 cliques.
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
Coloring of T
EFL and b-coloring of tight bipartite graphs

- [Lin, Chang (2013)]: EFL implies that class Bn of tight bipartite graphs is n- or $(n-1)$-b-colorable.

- In proof EFL is used as following:
 Let G be tight bipartite graph and G^* it’s conversion to graph satisfying hypothesis of clique version of EFL. If G^* is n colorable, then G is n- or $(n-1)$-b-colorable.
EFL and b-coloring of tight bipartite graphs

- $S(K_n)$ – graph created from K_n by subdivision of all edges
- Tetris for $S(K_n)^*$ is maximal tetris.
EFL and b-coloring of tight bipartite graphs

- n-b-colorability in tetris: all bricks with one filled tile have distinct colors
- [Lin, Chang (2013)]:
 - $S(K_n)$ is n-b-colorable for n odd
 - $S(K_n)$ is $(n-1)$-b-colorable for n even
- Proof in tetris:
 - n odd: from coloring of maximal tetris
 - n even: $S(K_n)$ not n-b-colorable and EFL holds for $S(K_n)$ from tetris coloring algorithm
EFL and b-coloring of tight bipartite graphs

- $G_{n,k}$ – taking $S(K_n)$, merging vertices $\{1,2\}, \ldots, \{1,k\}$ into one, adding some vertices of degree 1

- In tetris: $G_{n,k}^*$ is tetris with one brick with k filled tiles, rest are all bricks with two filled tiles which can be added (and some bricks with one filled tile).
EFL and b-coloring of tight bipartite graphs

- [Lin, Chang (2013)]: All graphs in $G_{n,k}$ are n- or $(n-1)$-b-colorable.

- Proof using tetris:
 - Color tetris of $G_{n,k}^*$ with n colors (alteration of algorithm for tetris with maximal number of crossings)
 - Implies n- or $(n-1)$-b-colorability by theorem of [Lin, Chang (2013)]
EFL and dense graphs

- \(\text{deg}(x) \) – number of cliques in which vertex/brick \(x \) belongs

- Two bricks/vertices collide, if they belong to same clique

- [Sánchez-Arroyo (2008)]:

 Let \(k \) be number of bricks with degree at least \(\text{deg}(x) \) coliding with \(x \), then

 \[
 k \leq \frac{\text{deg}(x)}{\text{deg}(x)-1} \cdot (n - \text{deg}(x)) + 1
 \]
New result:

- Choose any p bricks.
- Denote z number of cliques containing at least one of these chosen bricks.
- Let x be any brick with $\deg(x) > p + 1$
- Let k be number of bricks with degree at least $\deg(x)$ colliding with x
- Then $k \leq \frac{\deg(x)}{\deg(x) - 1 - p} \cdot (n - \deg(x) - z + p) + 1 + p$
- Note that for $p = 0$ we get result from [Sánchez-Arroyo (2008)]
EFL and dense graphs

- Let d be minimal degree of brick in tetris T and D maximal degree of a brick in tetris T.

- Corollary:
 - If $d > p+1$ and

 $$d \cdot z + (d - p)^2 + p > (p + 1) \cdot n$$
 - Then T can be colored by at most n colors.

- Corollary (weaker):
 - If d is at least 3 and d times D is at least $2n$, then T can be colored by at most n colors.
Conclusion

- We have seen and understood many different approaches to EFL and its connection to other mathematical structures.
- We have proven results about b-coloring of tight bipartite graphs in a different and easier way.
- We have generalized and improved results for dense graphs.

HOW A GRAPH THEORIST DRAWS A "STAR":

FIRST DRAW THE PETERSEN GRAPH

YES, MY PETERSEN GRAPH LOOKS THIS GOOD!

NOW ERASE THE OUTSIDE!

ANOTHER PERFECT STAR.