

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Tetrises and Graph Coloring

(joke included)

Aneta Štastná, Ondřej Šplíchal Mentor: Periklis Papakonstantinou

Motivation

 Suppose that, in a university department, there are n committees, each consisting of n faculty members, and that all committees meet in the same room, which has n chairs.

Motivation

- Suppose that, in a university department, there are n committees, each consisting of n faculty members, and that all committees meet in the same room, which has n chairs.
- Suppose also that at most one person belongs to the intersection of any two committees.

Motivation

- Suppose that, in a university department, there are n committees, each consisting of n faculty members, and that all committees meet in the same room, which has n chairs.
- Suppose also that at most one person belongs to the intersection of any two committees.
- Is it possible to assign the committee members to chairs in such a way that each member sits in the same chair for all the different committees to which he or she belongs?

Erdős-Faber-Lovász conjecture

 If *n* complete graphs, each having exactly *n* vertices, have the property that every pair of complete graphs has at most one shared vertex, then the union of the graphs can be colored with *n* colors.

Tetrises

Tetrises

Tetrises

New Perspective on EFL

Defining property:
 Every two bricks

 (rows) have at most
 one filled tile in
 common.

Tetrises

New Perspective on EFL

Defining property:
 Every two bricks

 (rows) have at most
 one filled tile in
 common.

Tetrises

New Perspective on EFL

Defining property:
 Every two bricks

 (rows) have at most
 one filled tile in
 common.

Tetrises

• Learn about known results on EFL

- Learn about known results on EFL
- Reformulate and improve these results in terms of tetrises:
 - holds for n < 13
 - holds for dense graphs
 - etc.

- Learn about known results on EFL
- Reformulate and improve these results in terms of tetrises:
 - holds for n < 13
 - holds for dense graphs
 - etc.
- Make existing proofs more clear using tetrises

- Learn about known results on EFL
- Reformulate and improve these results in terms of tetrises:
 - holds for n < 13
 - holds for dense graphs
 - etc.
- Make existing proofs more clear using tetrises
- Discover new things and hidden relations

Joke Thanks for watching!

