REU Program 2017 Supported by SAST-ATPAC

By Nalinpat Ponoi Advisor : Prof.Anders Buch

1 Backgrounds and Terminology

2 The problem and previous results

1 Backgrounds and Terminology

- Construction of Grassmannians
- Schubert Varieties
- Schubert Calculus
- Quantum Cohomology

Construction of Grassmannians

Definition 1.1 Let $k = \overline{k}$ be algebraically closed field, and let k^n be the vector space of column vectors with n coordinates. Give a non-negative integer $m \le n$, the **Grassmannian variety** Gr(m, n) is defined as a set by

 $Gr(m,n) = \{\Sigma \in k^n | \Sigma \text{ is a vector subspace with } \dim(\Sigma)=m\}.$

Definition 1.2 A Schubert symbol for Gr(m, n) is any subset I of cardinally m in the integer interval [1, n]. For any Schubert symbol I, we set $\Sigma_I = Span\{e_i | i \in I\}$.

Schubert Varieties

Schubert Varieties

Definition 1.3 Let $F_{\bullet} = (F_1 \subset F_2 \subset \cdots \subset F_n)$ be the standard flag of $V = k^n$, where $F_i = Span$ $\{e_1, e_2, \dots, e_i\}$. Given a point $\Sigma \in X$, define an **associated Schubert symbol** by $I(\Sigma) = \{i \in [1, n] | \Sigma \cap F_i \supset \Sigma \cap F_{i-1}\}.$

Moreover, for any Schubert symbol J for X we set

 $\dot{X}_J = \{ \Sigma \in X | I(\Sigma) = J \},\$

which is called Schubert cells.

Their closures are called Schubert varieties.

Schubert Varieties

Young Diagrams

Each Schubert symbols for X = Gr(m, n) corresponds to a Young diagram of boxes contained in the rectangle with *m* rows and n - m columns. Consider the path from the lower-left corner to the upper-right corner consisting n steps, where

- *i*-th step is vertical if $i \in I$ and
- *i*-th step is horizontal if $i \notin I$.

Example 1.4 The Schubert symbol $I = \{2,3,7,9\}$ for Gr(4,9) corresponds to the following Young diagram:

If λ is the Young diagram corresponding to J, then we will denote the Schubert variety X_J also by X_{λ} .

Schubert Calculus

Homology and Cohomology

Definition 1.5 A chain complex is a sequence

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots$$

of chain groups together with boundary homomorphisms ∂_i between the chain groups with the important property that $\partial_i \partial_{i+1} = 0$ for all *i*.

$$implies$$
$$m\partial_{n+1} \subset ker\partial_n$$

Iı

We now define the nth homology group in the chain complex to be the quotient

 $H_n(C) = ker\partial_n / Im\partial_{n+1}.$

Backgrounds and Terminology

Schubert Calculus Homology and Cohomology

Definition 1.6 Given a chain complex

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots$$

and a group *G*, we can define the **cochains** C_n^* to be the respective groups of all homomorphisms from C_n to *G*:

 $C_n^* = Hom(C_n, G).$

We define the **coboundary map** $\delta_n: C_{n-1}^* \to C_n^*$ dual to ∂_n as the map sending $\varphi \mapsto \delta_n \varphi = \partial_n^* \varphi$.

We now define the *n*th cohomology group as the quotient:

 $H^n(C;G) = ker\delta_{n+1}/Im\delta_n.$

Backgrounds and Terminology

Schubert Calculus > Cohomology Ring H*(X)

The Schubert classes $[X^{I}]$ form an **additive basis**

 $H^*(X)$

The **multiplicative structure** is defined by $[X^{I}] \cdot [X^{J}] = \sum_{K} C_{I,J}^{K} [X^{K}],$ where $C_{I,I}^{K}$ is called Little wood-Richardcon coefficients.

Schubert Calculus

Cohomology Ring H*(X)

> The Pieri Formula

Given Young diagrams $\lambda \subset \nu$, let ν/λ denote the skew diagram of boxes in ν that are not in λ . This diagram is called **horizontal strip** if each column contains at most one box.

We identify a Young diagram $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$, where λ_i is the number of boxes in *i*-th row.

For example, let $\nu = (4,3,2,2)$ in Gr(4,8) and let $\lambda = (3,2,2,1)$, we then have ν/λ is horizontal strip since

Schubert Calculus > Cohomology Ring H*(X)

The Pieri Formula

Theorem 1.7 Let λ be a Young diagram for X and $p \in [0, n - m]$. Then we have $[X^p] \cdot [X^{\lambda}] = \sum_{\nu} [X^{\nu}],$

where the sum is over all Young diagram ν for which ν/λ is a horizontal strip of p boxes.

Schubert Calculus

Cohomology Ring H*(X)

> The Pieri Formula

For example, let $\lambda = (3,2,1)$ in Gr(3,7) and let p = 2, consider

Then, we have $[X^2] \cdot [X^{(3,2,1)}] = [X^{(4,3,1)}] + [X^{(4,2,2)}] + [X^{(3,3,2)}].$

Quantum Cohomology

The small quantum ring

Definition 1.8 Given Young diagrams λ, μ, ν , and a degree d for which $|\lambda| + |\mu| = |\nu| + nd$, define the **Gromov-Witten invariant** $\langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_d$ to be the number of rational curves $C \subset X$ of degree d that meet the Schubert varieties $X^{\lambda}, g \cdot X^{\mu}$, and X_{ν} .

The small quantum ring is defined by

$$QH(X) = H^*(X) \otimes_{\mathbb{Z}} \mathbb{Z}[q]$$

which the multiplicative structure is defined by

$$[X^{\lambda}] \star [X^{\mu}] = \sum_{\nu, d \ge 0} \langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_{d} q^{d} [X^{\nu}]$$

where the sum is over all Young diagram ν and degree d.

Quantum Cohomology

The small quantum ring

> The quantum Pieri formula

Given Young diagram λ , let $\hat{\lambda}$ denote a partition obtained by removing the top row and leftmost column of λ .

Theorem 1.9 If λ is contained in an m×(n - m) rectangle and $p \in [1, n - m]$ then $[X^p] \star [X^{\lambda}] = \sum [X^{\mu}] + q \sum [X^{\nu}]$

where the first sum is over all partitions μ s.t. μ / λ is horizontal strip of p boxes, and the second sum is over all Young diagram ν containing $\hat{\lambda}$ s.t. $\nu / \hat{\lambda}$ is horizontal strip, $\nu_1 < \lambda_1$, and $|\nu| = |\lambda| + p - n$.

Schubert Calculus

The small quantum ring

> The quantum Pieri formula

For example, let $\lambda = (3,2,1)$ in Gr(3,7) and let p = 2, consider

Problem and previous results

- Does positivity determine quantum cohomology?
- Previous results

> The conjecture of Fomin, Gelfand, and Postnikov

Positivity properties

determine

The small quantum cohomology ring of variety of complete flags GL(n)/B

Grassmannian?

Facts

Gromov-Witten invariants & Schubert Varieties

Define

Quantum Cohomology Rings

Nonnegative integer

The problem and previous results

Force?

Conjecture1. Let QH be any graded $\mathbb{Z}[q]$ -algebra that has a $\mathbb{Z}[q]$ -basis $\{\tau_{\lambda}\}$ indexed by Young diagrams λ contained in $m \times (n - m)$, such that $\deg(\tau_{\lambda}) = |\lambda|$ and $\deg(q) = n$. Assume that the \mathbb{Z} -basis $\{q^{d}\tau_{\lambda}\}$ multiplies with non-negative structure constants, and the map $\tau_{\lambda} \mapsto [X^{\lambda}]$ defines an isomorphism of ring $QH/\langle q \rangle \cong H^{*}(X; \mathbb{Z})$. Then there exists a unique $\alpha \in \mathbb{N}$ such that multiplication in QH is determined by

$$\tau_{\lambda}\tau_{\mu} = \sum_{\nu,d\geq 0} \langle X^{\lambda}, X^{\mu}, X_{\nu} \rangle_{d} (\alpha q)^{d} \tau_{\nu}.$$

Previous Results

Conjecture 1 is true for Gr(2, n)

Is it true for Gr(k, n) for k > 2?

The problem and previous results

THANK YOU!

Supported by SAST-ATPAC

References:

- Anders S. Buch. Notes on Grassmannians. [Online] 2014 . Available from https://www.semanticscholar.org/paper/Notes-on-Grassmannians-BUCH/. [Accessed : May [2017].

- Anders S. Buch. Quantum cohomology of Grassmannians. [Online] 2003. Available from http://sites.math.rutgers.edu/~asbuch/papers/qschub.pdf. [Accessed : July [2017].

- E. F. W. Hefern. Homology and cohomology. [Online] 2005. Available from https://www3.nd.edu/~mbehren1/18.904/. [Accessed : July [2017].