REU Program 2017

Quantum Cohomology Rings

Generated by

Gromov-Witten Invariants

By Nalinpat Ponoi Mentor : Prof. Anders Skovsted Buch

Supported by SAST-ATPAC

Backgrounds and Terminology

Grassmannian

* What is Grassmannain?

Grassmannian is the set of m-dimensional subspace in an n-dimensional vector space, denoted by Gr(m,n).

Grassmannian

* What is Grassmannain?

Grassmannian is the set of m-dimensional subspace in an n-dimensional vector space, denoted by Gr(m,n).

Let k be an algebraically closed field, and let k^n be the vector space of column vector with n coordinates. Given a nonnegative integer $m \le n$, the **Grassmann variety** is defined as a set by

Gr(m,n) = { $\Sigma \subset k^n \mid \Sigma$ is vector subspace with dim(Σ) = m}.

Grassmannian

* What is Grassmannain?

Grassmannian is the set of m-dimensional subspace in an n-dimensional vector space, denoted by Gr(m,n).

Let k be an algebraically closed field, and let k^n be the vector space of column vector with n coordinates. Given a nonnegative integer $m \le n$, the **Grassmann variety** is defined as a set by

Gr(m,n) = { $\Sigma \subset k^n \mid \Sigma$ is vector subspace with dim(Σ) = m}.

For example, the set of lines Gr(1,n+1) is **projective space**.

Schubert Varieties

* What is Schubert Varieties?

Schubert varieties is a certain subvariety of Grassmannian, usually with singular points.

Schubert Varieties

* What is Schubert Varieties?

Schubert varieties is a certain subvariety of Grassmannian, usually with singular points.

Let X = Gr(m,n) denote a fixed Grassmannian and set G = GL(n). We also let $T \subset G$ be the **maximal torus** of diagonal matrices and $B \subset G$ the **Borel subgroup** of upper triangular matrices.

Schubert Varieties

* What is Schubert Varieties?

Schubert varieties is a certain subvariety of Grassmannian, usually with singular points.

Let X = Gr(m,n) denote a fixed Grassmannian and set G = GL(n). We also let $T \subset G$ be the **maximal torus** of diagonal matrices and $B \subset G$ the **Borel subgroup** of upper triangular matrices.

The orbits of the action of B on X are called the **Schubert cells** of X, and their closures are **Schubert varieties**.

* What is Gromov-Witten invariants?

Gromov-Witten invariant is a number that count curves meeting prescribed conditions in a given symplectic manifold. For example, Grassmannian space.

* What is Gromov-Witten invariants?

Gromov-Witten invariant is a number that count curves meeting prescribed conditions in a given symplectic manifold. For example, Grassmannian space.

Nonnegative integer

Gromov-Witten invariants & Schubert Varieties

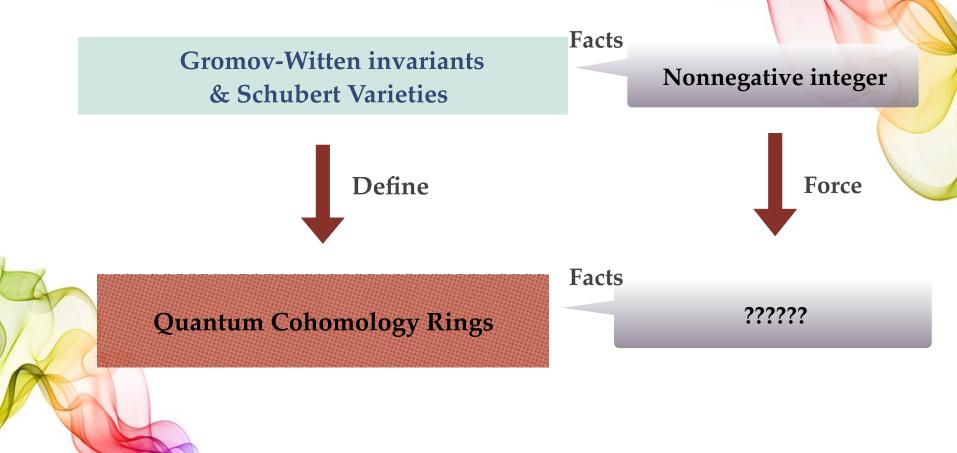
Gromov-Witten invariants & Schubert Varieties

Quantum Cohomology Rings

Gromov-Witten invariants & Schubert Varieties

Define

Quantum Cohomology Rings


Facts

Gromov-Witten invariants & Schubert Varieties

Nonnegative integer

Define

Quantum Cohomology Rings

Can describe what quantum cohomology ring is.

•

Can describe what quantum cohomology ring is.

•

& Can describe what Gromov-Witten invariant is.

Can describe what quantum cohomology ring is.

•

- **& Can describe what Gromov–Witten invariant is.**
- Provide properties of quantum cohomology rings by using Gromov-Witten invariants.

Can describe what quantum cohomology ring is.

•

- **& Can describe what Gromov–Witten invariant is.**
- **Provide properties of quantum cohomology rings by using Gromov–Witten invariants.**
- ✤ Get some ideas about what is "Geometry".

THANK YOU!

References:

Anders S. Buch. Notes on Grassmannians. [Online] 2014 . Available from https://www.semanticscholar.org/paper/Notes-on-Grassmannians-BUCH/. [Accessed : May 2017].