On the Diophantine Equation $x^{2}+D=k \cdot p^{n}$

Netiphan Amphaiphan

Advisor
Prof. Midge Cozzens

Department of Mathematics

$$
\text { June 6, } 2016
$$

Outline

- Diophatine Equation
- Our purpose

Diophantine Equation

Diophantine equation is an equation that has variable more than one. Its coefficients are integer and would like to find the solution in integer.

Example

$$
\begin{array}{ll}
\text { 1. } a x+b y=c & \text { Linear equation } \\
\text { 2. } x^{2}+y^{2}=z^{2} & \text { Pythagorean equation } \\
\text { 3. } x^{n}+y^{n}=z^{n} \\
\text { 4. } x^{2}+D=2^{n} \\
\text { 5. } x^{2}+D=k p^{n} &
\end{array}
$$

F.Beukers proved that the diophantine equation

$$
x^{2}+D=2^{n},
$$

where D is odd integer and $x, n \geq 1$, has at most four solutions for the case $D \neq 7$. For the case $D=7$ we have the well-known Ramanujan-Nagell equation which has five solutions, namely,

$$
\begin{array}{cccrc}
n=3 & 4 & 5 & 7 & 15 \\
x=1 & 3 & 5 & 11 & 181
\end{array}
$$

Consider the diophantine equation

$$
x^{2}+D=A \cdot 2^{n}
$$

where D is an odd integer, $A \geq 3$ a positive odd integer, $\operatorname{gcd}(A, D)=1$ and $x, n \geq 1$. For $D=119$ and $A=15$, Stiller proved that the equation has exactly six solutions

$$
\begin{array}{lrrrrr}
n=3 & 4 & 5 & 6 & 8 & 15 \\
x=1 & 11 & 19 & 29 & 61 & 701
\end{array}
$$

Our purpose

In our work, we will find that there is an absolute constant C such that the diophantine equation

$$
x^{2}+D=k \cdot p^{n}
$$

has at most C solutions (x, n), where D and k be positive integers and p be a prime number such that $\operatorname{gcd}(D, k p)=1$.

Thank you for your attention

