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Preliminaries



Some ML/stats notation

Y: the target variable; outcome of interest; the ground truth

A: group membership in something protected (e.g. race,
gender)

X: covariates; features; independent variables

Ŷ: what the ML program or decision-maker thinks Y is; the
predicted output

Ŝ: risk scores, which are thresholded into 0− 1 scores Ŷ

Machine Learning Task:
Learn f : X→ Ŷ on a labeled set to minimize error on new
observations
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Ŝ: risk scores, which are thresholded into 0− 1 scores Ŷ
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Ŷ: what the ML program or decision-maker thinks Y is; the
predicted output
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The Philosophy of Fairness

Central Question
What does it mean for an algorithm to be fair?

Philosophically, we might ask:

• Should people be penalized for factors outside their
control?

• Should decisions try to ultimate rectify group-level
inequalities?

• Are people deterministic or probabilistic?
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Common Observational Notions of
Fairness



Observational Notions of Fairness

For assessment, only require black-box access to a predictor
(just the set of inputs and outputs)

In theory, equally applicable to human decision-makers as
algorithms

For each of the following definitions, one must also consider:

• How to test this fairness definition on an algorithm in a
principled way?

• How to learn fairly with respect to this definition
(fairness-aware classifiers)?
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Statistical Parity

Definition

Ŷ ⊥ A
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Statistical Parity

Definition

Ŷ ⊥ A

Problems:
• Not compatible with the ideal predictor Ŷ = Y
• Too strong: Y may correlate with A for “benign” reasons
• Also too weak: Possible for Ŷ⊥̸ A | V for some V

What if V = Y? ⇒ “Scapegoating” protected individuals
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What if V = Y? ⇒ “Scapegoating” protected individuals

6/24



Statistical Parity

Definition
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• Too strong: Y may correlate with A for “benign” reasons
• Also too weak: Possible for Ŷ⊥̸ A | V for some V
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Conditional Statistical Parity

Definition

Ŷ ⊥ A | X

Within in each possible bucket of relevant information, the
probability of decision is the same across protected groups

With enough X, this definition is equivalent to treating “nearby”
individuals similarly (fairness through awareness, Dwork et al.,
2012)
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Equalized Odds

Definition

Ŷ ⊥ A | Y

Every equally qualified individual has an equal chance of
receiving positive classification

Equal rates of false positives (FP) and false negatives (FN)

Compatible with perfect prediction

Related to conditional statistical parity... except Y is not
available for new observations

Retrospectively getting the prediction right (how right were the
predictions by group)
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Calibration

Definition

Y ⊥ A | Ŷ

Predicted scores should reflect equal probability of the true
status Y across protected groups

The sole criterion for non-discrimination in many social
sciences (e.g. psychology, educational tools)

Prospectively getting the prediction right (how right will the
predictions be by group)
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Problems with Observational
Notions of Fairness



Impossibility Theorems

Theorem
Calibration and equalized odds cannot both hold for a set of
predictions, under two conditions:

• Perfection prediction is not achieved
• Background rates of Y are unequal across groups

Theorem resulted from the debate about COMPAS scores
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COMPAS Refresher

What COMPAS got right:

• Scores were well-calibrated:

E[Y = 1 | y = 0, A = black] = E[Y = 1 | y = 0, A = white]

Translation: Black people with a score of 7 were as likely to recidivate
as white people with a score of 7

What COMPAS got wrong:

• Unequal false negative rates:

E[y = 0 | Y = 1, A = black] ̸= E[y = 0 | Y = 1, A = white]

Translation: White people who would actually recidivate almost twice
as likely to be scored “low risk”

• Unequal false positive rates:

E[y = 1 | Y = 0, A = black] ̸= E[y = 1 | Y = 0, A = white]

Translation: Black people who would not actually recidivate almost
twice as likely to be scored “higher risk” 11/24
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Fairness v. Fairness Trade-Off

Impossibility matters: Not only is there a fairness v. accuracy
trade-off

...There’s also a fairness v. fairness trade-off

What matters more: Getting answers prospectively v.
retrospectively correct?

But wait, there’s more!
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Infra-Marginality (aka Fairness v. Fairness Trade-Off, Part 2)

Where does one set the threshold for decisions?

First, trying to be “fair” as defined above leads to different
thresholds for different groups

But the direction of unfairness can be reversed with different
distributions of risk scores! (Simoiu, Corbett-Davies, and Goel,
2017; Corbett-Davies et al., 2017)
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Infra-Marginality

Both graphs are observationally equivalent:

• Red individuals searched more often (area under the curve right of
threshold)

• Searches of red individuals are less successful

But in (b), blue individuals have the lower threshold!
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Beyond Observational Measures



Aggregation

We have to fix from the onset what a protected group is

Consider the following binary prediction task:

• Protected attributes are race (red or blue) and gender
(male or female)

• An algorithm only predicts Ŷ = 1 for red males and blue
females

“Fair” with respect to either race or gender considered alone
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Finer-Grained Fairness

Methods for assessing fairness on arbitrary subgroups:

• Learn a classification tree (Chouldechova, 2017)
• Use (carefully-constructed) statistical tests to find
differential predictions across exponentially many groups
(in linear time) (Zhang and Neill, 2016)

Methods for learning fairly on arbitrary subgroups:

• Kearns et al., 2017 provide a method for learning a fixed
notion of fairness with respect to arbitrarily many
subgroups (uses Learner-Auditor dynamics)

• Hébert-Johnson et al., 2017; Kim, Ghorbani, and Zou, 2018
learn more accurately with respect to arbitrary many
subgroups (boosting)
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Obliviousness

Causal Limitation of Observational Measures
There are two scenarios with identical joint distributions, but
completely different interpretations for fairness (Hardt, Price,
and Srebro, 2016).

Causal models help us make this distinction.

We can now answer:

• What unobserved variables are in our scenario, and what
are their values? (What’s the inherent risk?)

• What are the functional or causal relationship between
variables in our scenario? (Kilbertus et al., 2017)

• Importantly, what would predictions have been if A had
been different? (Kusner et al., 2017)
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(The Problem with) Causality

The problem is finding the modelM:

“Counterfactuals assumptions such as structural equations are
in general unfalsifiable even if interventional data for all
variables is available... Having passed testable implications,
the remaining components of a counterfactual model should
be understood as conjectures formulated according to the
best of our knowledge.” (Kusner et al., 2017)

One workaround, “Multi-world fairness” (Russell et al., 2017),
allows for optimizing counterfactual fairness with respect to
multiple different models

But this doesn’t address the issue of discovering path-specific
discrimination.
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Modeling Long-Term Fairness

“Delayed Impact of Fair Machine Learning” (Liu et al., 2018)

• Fairness of a single decision (e.g. loan approval) does not
consider the effect on the overall group

• So, what’s the effect of different thresholds on
populations on the change in group credit score?

• We can figure this out by calculating the effect of false
positives and false negatives on credit score...

• “Fair” algorithms (demographic parity and equal
opportunity) do worse than the unconstrained decision
threshold!
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