Fairness in Machine Learning

Michael Yang Prof. Anand Sarwate

DIMACS REU 2018

June 4, 2018
The debate over recidivism scores
The debate over recidivism scores

COMPAS is an algorithmic tool that predicts how likely jailed individuals will commit another crime.
The debate over recidivism scores

COMPAS is an algorithmic tool that predicts how likely jailed individuals will commit another crime.

In 2016, ProPublica published an analysis asserting that COMPAS treated black and white individuals differently.
The debate over recidivism scores

COMPAS is an algorithmic tool that predicts how likely jailed individuals will commit another crime.

In 2016, ProPublica published an analysis asserting that COMPAS treated black and white individuals differently.

Resulted in long exchange between ProPublica, authors of COMPAS, and computer science community.
Some ML/stats notation

\[Y \]: the target variable; outcome of interest; the ground truth

\[A \]: group membership in something protected (e.g., race, gender)

\[X \]: covariates; features; independent variables

\[y \]: what the ML program or decision-maker thinks \(Y \) is
Some ML/stats notation

\(Y \): the target variable; outcome of interest; **the ground truth**
Some ML/stats notation

\(Y\): the target variable; outcome of interest; \textbf{the ground truth}

\(A\): group membership in something protected (e.g. race, gender)
Some ML/stats notation

Y: the target variable; outcome of interest; **the ground truth**

A: group membership in something protected (e.g. race, gender)

X: covariates; features; independent variables
Some ML/stats notation

\(Y \): the target variable; outcome of interest; **the ground truth**

\(A \): group membership in something protected (e.g. race, gender)

\(X \): covariates; features; independent variables

\(y \): what the ML program or decision-maker *thinks* \(Y \) is
What COMPAS got right

- Scores were *well-calibrated* (also called *equal positive predictive values*):

\[E[Y = 1 \mid y = 0, A = \text{black}] = E[Y = 1 \mid y = 0, A = \text{white}] \]

Translation: Black people with a score of 7 were as likely to recidivate as white people with a score of 7
What COMPAS got wrong

▶ Unequal false negative rates:

$$E[y = 0 \mid Y = 1, A = \text{black}] \neq E[y = 0 \mid Y = 1, A = \text{white}]$$

Translation: White people who would actually recidivate almost twice as likely to be scored "low risk"

▶ Unequal false positive rates:

$$E[y = 1 \mid Y = 0, A = \text{black}] \neq E[y = 1 \mid Y = 0, A = \text{white}]$$

Translation: Black people who would not actually recidivate almost twice as likely to be scored "higher risk"
New data: Mortgages

Opportunity to take lessons from COMP AS and apply them to a new, different dataset

- 11.9 million observations (compared to 18,000 in COMP AS data)
- Missing Y, the ground truth

Loan approvals are decided using a combination of human and computer decision-making

End goals:
Understand (different kinds of) fairness on a new set of data.
Make it easier for new researchers to get caught-up with the fair ML conversation.
Opportunity to take lessons from COMPAS and apply them to a new, different dataset
New data: Mortgages

Opportunity to take lessons from COMPAS and apply them to a new, different dataset

- 11.9 million observations (compared to 18,000 in COMPAS data)
New data: Mortgages

Opportunity to take lessons from COMPAS and apply them to a new, different dataset

- 11.9 million observations (compared to 18,000 in COMPAS data)
- Missing Y, the ground truth
Opportunity to take lessons from COMPAS and apply them to a new, different dataset

- 11.9 million observations (compared to 18,000 in COMPAS data)
- Missing Y, the ground truth
- Loan approvals are decided using a combination of human and computer decision-making
New data: Mortgages

Opportunity to take lessons from COMPAS and apply them to a new, different dataset

- 11.9 million observations (compared to 18,000 in COMPAS data)
- Missing Y, the ground truth
- Loan approvals are decided using a combination of human and computer decision-making

End goals:
Understand (different kinds of) fairness on a new set of data.
Make it easier for new researchers to get caught-up with the fair ML conversation.
Other kinds of technical fairness:

- Parity between metrics (e.g. equivalent predictive accuracy between groups)
- Conditional independence (e.g. acceptance is independent of race conditional on SAT score or y)
- Absence of causal chains (best visualized with probabilistic graphical models)

Relationship between the above kinds of fairness

Learning fair classifiers/predictors in addition to accurate ones
Additional/future technical directions

Other kinds of technical fairness:

- Parity between metrics (e.g. equivalent *predictive accuracy* between groups)
Additional/future technical directions

Other kinds of technical fairness:

- Parity between metrics (e.g. equivalent *predictive accuracy* between groups)
- Conditional independence (e.g. acceptance is independent of race conditional on SAT score or $y \perp A \mid X$)
Other kinds of technical fairness:

- Parity between metrics (e.g. equivalent *predictive accuracy* between groups)
- Conditional independence (e.g. acceptance is independent of race conditional on SAT score or $y \perp A \mid X$)
- Absence of causal chains (best visualized with probabilistic graphical models)
Other kinds of technical fairness:

- Parity between metrics (e.g. equivalent *predictive accuracy* between groups)
- Conditional independence (e.g. acceptance is independent of race conditional on SAT score or $y \perp A \mid X$)
- Absence of causal chains (best visualized with probabilistic graphical models)

Relationship between the above kinds of fairness
Additional/future technical directions

Other kinds of technical fairness:

- Parity between metrics (e.g. equivalent *predictive accuracy* between groups)
- Conditional independence (e.g. acceptance is independent of race conditional on SAT score or $y \perp A \mid X$)
- Absence of causal chains (best visualized with probabilistic graphical models)

Relationship between the above kinds of fairness

Learning fair classifiers/predictors in addition to accurate ones
Acknowledgments

Funding Received from:
National Science Foundation CCF-1559855