High-School Partitions REU 2020 PROJECT

JOSEF MINAŘÍK, MICHAEL SKOTNICA MENTOR: SHAY MORAN

Acknowledgement

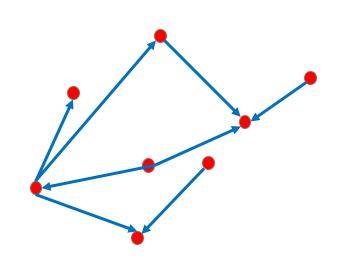
Center for Discrete Mathematics & Theoretical Computer Science Founded as a National Science Foundation Science and Technology Center

COMBINATORIAL STRUCTURES AND PROCESSES RESEARCH AND INNOVATION STAFF EXCHANGE PROJECT

Supported by the H2020-MSCA-RISE project CoSP- GA No. 823748.

Legal Partitions

- G = (V, E) digraph
- V set of students
- *E* preferences:
 - $u \rightarrow v \in E \implies u$ wants to be with v



Legal Partitions

• G = (V, E) - digraph

Definition.

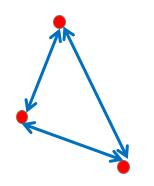
Let $V = V_1 \cup \cdots \cup V_k$ be a partition of V into k nonempty parts. The partition is called <u>legal</u> if $(\forall V_i)(\forall v \in V_i)$: outdeg_{Vi} $(v) \ge 1$

• So, we partition to k classes such that each student has at least 1 friend in each class

Existence of Legal Partitions

Theorem [Thomassen 1983]. Let G = (V, E) be a graph such that each vertex has outdegree at least 3. Then, there exists a legal partition $V = V_1 \cup V_2$.

• Theorem is tight:



Thomassen's Theorem

Proof [Overview].

- Constructive proof
- WLOG assume the outdegree of each vertex is <u>exactly</u> 3
- Two steps
 - 1. Find two disjoint cylces (interesting part)
 - 2. Extend the two cycles to the desired partition (easy part)

Extending Disjoint Cycles to a Legal Partition

Let C_1 , C_2 denote the disjoint cycles obtained in Step 1.

Consider a maximal legal extension $C_1 \subseteq V_1, C_2 \subseteq V_2$.

We claim that $V = V_1 \cup V_2$ (and hence a legal partition)

Indeed, if $\exists v \notin V_1 \cup V_2$ then consider any maximal path starting at v

If this path reaches V_1 or V_2 at some point then add the corresponding prefix to V_1 or V_2 accordingly

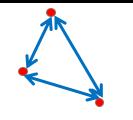
Else, add the entire path to V_1 or V_2 arbitrarily

QI: How Many Legal Partitions Are There?

Question 1.

Let t(d,n) denote the minimum number of non-trivial legal partitions of a digraph with n vertices and minimum outdegree $\geq d$. Provide upper and lower bounds on t(d,n).

- t(2,n) = 0
- $t(3,n) \ge 1$
- $\lim_{n \to \infty} t(3, n) = \infty$???
- How about t(d, n) for larger d's?



\\Thomassen Theorem

Q2: Can Any Pair of Vertices Be Separated Legally?

Question 2.

Let G = (V, E) be a graph so that each vertex has outdegree at least 3 and let $u, v \in V$ be distinct. Does there exist a legal partition $V = V_1 \cup V_2$ such that $u \in V_1$, $v \in V_2$???

- An affirmitive answer implies $t(3,n) \ge \lfloor \log n \rfloor$
- How about when we assume a larger outdegree?
 - Constant?
 - Some function of n?