

Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

Computing explicit equations of fake projective planes

Mattie Ji

DIMACS REU - advised by Lev Borisov

July 21st, 2023

Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

1 Background in Algebraic/Complex Geometry

2 The Fake Projective Plane of Interest

WITGERS Fake Projective Plane

Computing explicit equations of fake projective planes

Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

Definition:

The complex projective *n*-space $\mathbb{C}P^n$ is the set of 1-dimensional linear subspaces of \mathbb{C}^{n+1} .

Definition:

A fake projective plane (FPP) is a complex surface with the same Betti numbers as $\mathbb{C}P^2$ but not biholomorphic to it.

- By Chow's Theorem, it is known that all FPPs are algebraic surfaces [Cho49].
- By the works of Cartwright and Steger in [CS10] and Prasad and Yeung in [PY10], it is known that there are exactly 100 fake projective planes up to biholomorphism.
- However, the question of constructing explicit equations for each FPP is largely unsolved. For FPPs with equations, they tend to be quite complicated.

RUTGERS Line Bundles

Computing explicit equations of fake projective planes

Mattie Ji

Background in Algebraic/Complex Geometry

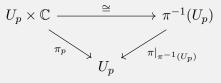
The Fake Projective Plane of Interest

Main Results

Definition:

A (complex, holomorphic) line bundle $\pi: L \to M$ is a holomorphic map such that:

- For all $p \in M$, $\pi^{-1}(p)$ is biholomorphic to \mathbb{C} .
- (Local Triviality): For all p ∈ M, there exists some neighborhood U_p such that the following diagram commutes and are all holomorphic maps:



A global section of L is a map $s: M \to L$ such that $\pi \circ s = 1_M$. $H^0(M, L)$ is the \mathbb{C} -vector space of all global sections.

WITGERS Examples and the Picard Group

Computing explicit equations of fake projective planes

Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

Examples:

- The line bundle π : C × M → M is an example of a globally trivial line bundle.
- The tangent bundle of $\mathbb{C}P^1$ is an example of a non-trivial line bundle.

Definition:

The isomorphism classes of line bundles $L\to M$ form an abelian group known as the "Picard Group" ${\rm Pic}(M)$ via tensor product.

$\overline{\mathbf{G}}^{\mathsf{RUTGERS}}$ How to Construct Maps to $\mathbb{C}P^n$

Computing explicit equations of fake projective planes

Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

Let X be a closed complex manifold and $\pi: L \to M$ be a line bundle. Suppose for every $p \in M$, there exists some section s such that $s(p) \neq 0$.

1 Since M is compact, $\dim_{\mathbb{C}} H^0(M, L) < \infty$, we can find a basis $s_0, ..., s_n$ of $H^0(M, L)$.

2 We construct a map $\Phi: M \to \mathbb{C}P^n$ as

$$\Phi(p) = [s_0(p) : s_1(p) : \dots : s_n(p)]$$

 $s_0, ..., s_n$ can't be all 0 at the same point due to our assumption.

3 Technically, each s_i(p) is an element of π⁻¹(p), but it is without loss a complex number via the isomorphism π⁻¹(p) ≅ C. This is well-defined by the equivalence of the projective coordinates.

Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

Background in Algebraic/Complex Geometry

2 The Fake Projective Plane of Interest

WITGERS The Fake Projective Plane of Interest

Computing explicit equations of fake projective planes

Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

We are interested in the fake projective plane $X = (a = 7, p = 2, \emptyset, D_3 2_7)$ in the Cartwright-Steger Classification [CS10].

- Fact: There exists a line bundle *H* over *X* such that the canonical line bundle *K* is isomorphic to 3H.
- Cartwright and Steger realized X as a quotient \mathbb{B}^2/Γ_1 in [CS10], where

$$\mathbb{B}^2 \coloneqq \{(z,w) \in \mathbb{C}^2 \ | \ |z|^2 + |w|^2 < 1\}$$

It is also shown that

$$\operatorname{Pic}(X) \cong \mathbb{Z}H \oplus (\mathbb{Z}/2)^4$$

- There exists a unique non-zero torsion element $D \in Pic(X)$ that's fixed by automorphisms of X.
- In [BK20], Borisov and Keum produced an embedding of X into CP⁹ using 10 global sections of H⁰(X, 6H).

Mattie Ji

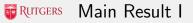
Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest



Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

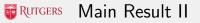
Main Results

By the Riemann-Roch Theorem and the Kodaira Vanishing Theorem, one can find that, for any torsion $T \in Pic(X)$ and $n \ge 4$,

$$\dim_{\mathbb{C}} H^0(X, nH + T) = \frac{(n-1) \cdot (n-2)}{2}$$

Result I:

- By considering the basis of 6 global sections on $H^0(X, 5H + D)$, we were able to produce an embedding of X into $\mathbb{C}P^5$.
- Interestingly, when we tried to do the same procedure with the 6 global sections of $H^0(X, 5H)$, the image of X is singular.

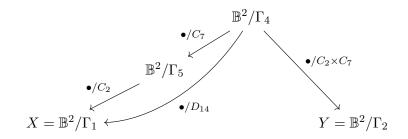


Mattie Ji

Main Results

Result II:

We found an explicit embedding for a new pair of fake projective planes $Y = (a = 7, p = 2, \emptyset, D_3X_7)$ in $\mathbb{C}P^9$ closely related to X.



RUTGERS Acknowledgements

Computing explicit equations of fake projective planes

Mattie Ji

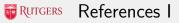
Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

We would like to thank

- Lev Borisov for advising this project.
- My collaborators Yanxin Li and Sargam Mondal.
- Work supported by Rutgers Department of Mathematics and the DIMACS REU program.
- My letter of recommendation writers Lena Ji (no relations) and Dan Abramovich.



Mattie Ji

Background in Algebraic/Complex Geometry

The Fake Projective Plane of Interest

Main Results

Lev A. Borisov and JongHae Keum.
Explicit equations of a fake projective plane.
Duke Mathematical Journal, 169(6), apr 2020.

Wei-Liang Chow.

On compact complex analytic varieties. *American Journal of Mathematics*, 71(4):893–914, 1949.

Donald I. Cartwright and Tim Steger. Enumeration of the 50 fake projective planes. Comptes Rendus Mathematique, 348(1):11–13, 2010.

Gopal Prasad and Sai-Kee Yeung.

Addendum to "fake projective planes" invent.nbsp;math. 168, 321–370 (2007).

Inventiones mathematicae, 182(1):213–227, 2010.