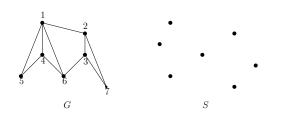
k-colored Point-set Embeddability of Graphs

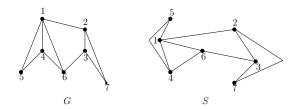
Peter Korcsok and Michael Skotnica

Charles University, Prague


CHARLES UNIVERSITY Faculty of mathematics and physics

DIMACS REU 2018 Rutgers University, July 12, 2018

Definition


We are given a planar graph G = (V, E) and a point set S (|V| = |S|).

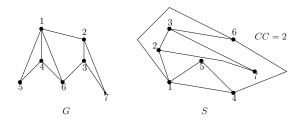
Definition

We are given a planar graph G = (V, E) and a point set S (|V| = |S|).


• A **point-set embedding** of G on S is a planar drawing such that each vertex is represented by a distinct point of S.

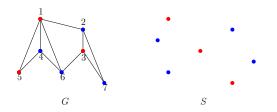
Definition

We are given a planar graph G = (V, E) and a point set S (|V| = |S|).


- A **point-set embedding** of G on S is a planar drawing such that each vertex is represented by a distinct point of S.
- A curve complexity (CC) of the PSE is the maximum number of bends along any edge.

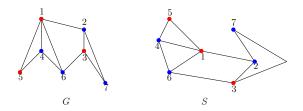
Definition

We are given a planar graph G = (V, E) and a point set S (|V| = |S|).


- A **point-set embedding** of G on S is a planar drawing such that each vertex is represented by a distinct point of S.
- A curve complexity (CC) of the PSE is the maximum number of bends along any edge.

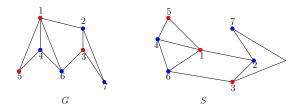
More Colors and More Graphs

Definition


In a colored PSE, both vertices and points are colored – a vertex can be represented only by a point of the same color.

More Colors and More Graphs

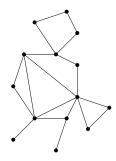
Definition


In a colored PSE, both vertices and points are colored – a vertex can be represented only by a point of the same color.

More Colors and More Graphs

Definition

In a colored PSE, both vertices and points are colored – a vertex can be represented only by a point of the same color.

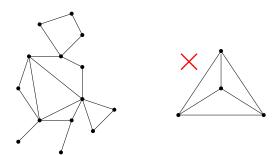

Problem

Given a family of planar graphs \mathcal{G} and a number of colors k, we want to know the worst-case CC for any graph $G \in \mathcal{G}$ and any point set S.

Outerplanar Graph

Definition

An **outerplanar graph** is a graph for which there exists a planar drawing where all vertices belongs to the outer face.



Outerplanar Graph

Definition

An **outerplanar graph** is a graph for which there exists a planar drawing where all vertices belongs to the outer face.

Known Results for Two Colors

	paths	caterp.	trees	outerpl.	planar
upper	1 [1]	1 [2]	5	5 [3]	O(n)
lower	1 [4]	1	1	1	$\Omega(n)$ [5]

Di Giacomo, Liotta, Trotta IJFCS 2006; [2] Hančl pers.comm.; [3] Di Giacomo et al. JGAA 2008;
[4] Kaneko, Kano, Suzuki TTGG 2004; [5] Badent, Di Giacomo, Liotta TCS 2008.

Known Results for Two Colors

	paths	caterp.	trees	outerpl.	planar
upper	1 [1]	1 [2]	5	5 [3]	O(n)
lower	1 [4]	1	1	1	$\Omega(n)$ [5]

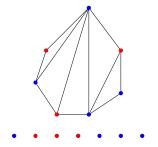
Di Giacomo, Liotta, Trotta IJFCS 2006; [2] Hančl pers.comm.; [3] Di Giacomo et al. JGAA 2008;
[4] Kaneko, Kano, Suzuki TTGG 2004; [5] Badent, Di Giacomo, Liotta TCS 2008.

Theorem (Our result)

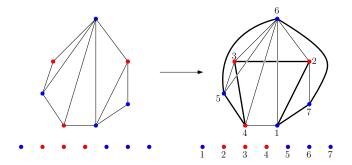
Every 2-colored outerplanar graph can be embedded on any 2-colored compatible set with at most 4 bends per edge.

Augmenting Hamiltonian Cycle

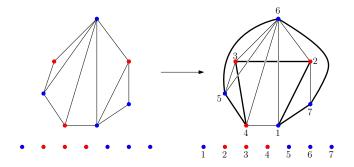
- We use a technique described in [1].
- Let S be a k-colored sets of points in the plane. WLOG, we may assume that each point has a different x-coordinate. Otherwise, we slightly rotate the plane. Let $\sigma = \sigma_1, \ldots, \sigma_n$ denote the sequence of the points S according the x-coordinate.


[1] Di Giacomo et al. *k*-colored Point-Set Embeddability of Outerplanar Graphs. JGAA, 12(1) 29-49 (2008)

Sketch of proof


Future Plans

Augmenting Hamiltonian Cycle



Augmenting Hamiltonian Cycle

Augmenting Hamiltonian Cycle

(Tools)

• Augmenting Hamiltonian circle consistent with σ with at most d crossings per edge

Tools

Future Plans

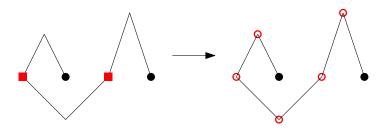
Augmenting Hamiltonian Cycle

Theorem [1]

Let G be a k-colored graph, let S be a k-colored set of points in the plane compatible with G and let σ be a sequence of points of S according to the x-coordinate. If G has an augmenting Hamiltonian circle consistent with σ with at most d crossings per edge then it can be embedded into S with at most 2d + 1 bends per edge.

[1] Di Giacomo et al. *k*-colored Point-Set Embeddability of Outerplanar Graphs. JGAA, 12(1) 29-49 (2008)

Tools


Augmenting Hamiltonian Cycle

- Add a division vertex of a new color for each crossing.
- 2 Add a dummy points for division vertices into S.
- S Embed such graph with 1 bend per edge.
- **(3)** Remove division vertices and obtain at most (d + 1) + d bends per edge.

(Tools)

Augmenting Hamiltonian Cycle

- Add a division vertex of a new color for each crossing.
- 2 Add a dummy points for division vertices into S.
- S Embed such graph with 1 bend per edge.
- 3 Remove division vertices and obtain at most (d+1) + d bends per edge.

Results

Tools

(Sketch of proof)

Future Plans

Improving the Theorem

Theorem

Let G be a k-colored planar graph, let S be a k-colored set of points in the plane compatible with G and let σ be a sequence of points of S according to the x-coordinate. If G has an augmenting Hamiltonian circle consistent with σ with at most d crossings per edge then it can be embedded into S with at most 2d bends per edge.

Using the Theorem for Outerplanar Graphs

Theorem [1]

Let G be an outerplanar 2-colored graph. Let S be a 2-colored set of points in the plane compatible with G and let σ be a sequence of points of S according to the x-coordinate. Then G has an augmenting Hamiltonian circle consistent with σ with at most 2 division crossings per edge.

[1] Di Giacomo et al. *k*-colored Point-Set Embeddability of Outerplanar Graphs. JGAA, 12(1) 29-49 (2008)

Using the Theorem for Outerplanar Graphs

Theorem [1]

Let G be an outerplanar 2-colored graph. Let S be a 2-colored set of points in the plane compatible with G and let σ be a sequence of points of S according to the x-coordinate. Then G has an augmenting Hamiltonian circle consistent with σ with at most 2 division crossings per edge.

[1] Di Giacomo et al. *k*-colored Point-Set Embeddability of Outerplanar Graphs. JGAA, 12(1) 29-49 (2008)

Corollary

Every 2-colored outerplanar graph can be embedded on any 2-colored compatible set with at most 4 bends per edge.

(Hopefully) Future Plans

Conjecture

Let G be an outerplanar 2-colored graph. Let S be a 2-colored set of points in the plane compatible with G and let σ be a sequence of points of S according to the x-coordinate. Then G has an augmenting Hamiltonian circle consistent with σ with at most 1 division crossing per edge.

(Hopefully) Future Plans

Conjecture

Let G be an outerplanar 2-colored graph. Let S be a 2-colored set of points in the plane compatible with G and let σ be a sequence of points of S according to the x-coordinate. Then G has an augmenting Hamiltonian circle consistent with σ with at most 1 division crossing per edge.

Corollary

Every 2-colored outerplanar graph can be embedded on any 2-colored compatible set with at most 2 bends per edge.

(Hopefully) Future Plans

Conjecture

Let T be a 2-colored tree. Let S be a 2-colored set of points in the plane compatible with G and let σ be a sequence of points of S according to the x-coordinate. Then T has an augmenting Hamiltonian circle consistent with σ which is planar.

(Hopefully) Future Plans

Conjecture

Let T be a 2-colored tree. Let S be a 2-colored set of points in the plane compatible with G and let σ be a sequence of points of S according to the x-coordinate. Then T has an augmenting Hamiltonian circle consistent with σ which is planar.

Corollary

Every 2-colored tree can be embedded on any 2-colored compatible set with at most 1 bends per edge.

Thank you!

Center for Discrete Mathematics and Theoretical Computer Science Founded as a National Science Foundation Science and Technology Center

