Grid Multi-Robot Path Planning with the Corner Following Constraint: Tighter Bounds and Intractability

> Marcus Gozon Mentor: Jingjin Yu

> > July 21, 2023

Multi-Robot Path Planning (MRPP) Problems

Grid MRPP: Suppose you have a grid graph G(V, E) and n robots with start configuration $S = \{s_1, \ldots, s_n\} \subseteq V$ and goal configuration $G = \{g_1, \ldots, g_n\} \subseteq V$. We seek to route the robots along collision-free paths P_i efficiently. In particular, we seek to minimize the overall makespan where motion is uniform without any meet or head-on collisions.

MRPP with CFC: Additionally, we may have a corner following constraint.

(a) Ocado Systems ^a

(b) Automated Garages ^a

^a "Inside a Warehouse Where Thousands Of Robots Pack Groceries." Tech Insider.

^a "Automated Multistory Parking Facilities." Trends in Japan.

Rubik Tables: an $m \times n$ grid can be arbitrarily permuted in three phases, permuting *m* rows, *n* columns, and then *m* rows again [1].

Grid MRPP: sub-1.5 time-optimal algorithms via Rubik Tables [3].

MRPP with CFC:

	$\Theta(m_1m_2)$ Escorts	$\Theta(m_1 + m_2)$ Escorts	$\Theta(1)$ Escorts
Upper Bound	$O(m_1 + m_2)$	$O(m_1m_2)^*$	_*
Lower Bound	h.p. $\Omega(m_1 + m_2)$	h.p. $\Omega(m_1+m_2)$	exp. $\Omega(m_1m_2)$

Note: escorts are the empty spaces in our MRPP instance.

Theorem (Single Escort MRPP with CFC Makespan)

A given MRPP with CFC instance on an $m_1 \times m_2$ grid for $m_1, m_2 \ge 2$ containing a single escort can be solved in $O(m_1m_2)$ time.

This matches the $\Omega(m_1m_2)$ expected lower bound.

Theorem (k Escorts MRPP with CFC Makespan)

A given MRPP with CFC instance on an $m_1 \times m_2$ grid for $m_1, m_2 \ge 2$ containing $k \le \min(m_1, m_2)$ escorts can be solved in $O(m_1m_2/k)$ time, and for $k > \min(m_1, m_2)$, it can be solved in $O(\max(m_1, m_2))$ time.

These match the $\Omega(m_1m_2/k)$ expected lower bound and $\Omega(\max(m_1, m_2))$ high probability lower bound respectively.

Overall Strategy: Rubik Tables How can we efficiently simulate row and column permutations?

Overall Strategy: Rubik Tables

How can we efficiently simulate row and column permutations?

Lemma (Linear $3 \times m$ Sort)

Given a single escort, a $3 \times m$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in O(m) time.

Overall Strategy: Rubik Tables

How can we efficiently simulate row and column permutations?

Lemma (Linear $3 \times m$ Sort)

Given a single escort, a $3 \times m$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in O(m) time.

Lemma (Linear $2 \times m$ Sort)

Given a single escort, a $2 \times m$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in O(m) time.

Overall Strategy: Rubik Tables

How can we efficiently simulate row and column permutations?

Lemma (Linear $3 \times m$ Sort)

Given a single escort, a $3 \times m$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in O(m) time.

Lemma (Linear $2 \times m$ Sort)

Given a single escort, a $2 \times m$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in O(m) time.

Corollary (Linear $2 \times m$ Half-Sort)

Given a single escort, a $2 \times m$ grid can be permuted to fill one of its rows arbitrarily in O(m) time.

Linear $3 \times m$ Sort

How can we permute the robots while leveraging batched movement with just a single escort?

Linear $3 \times m$ Sort

How can we permute the robots while leveraging batched movement with just a single escort?

- We solve a subgrid, ignoring the other elements, giving us "room" to arrange the chosen elements.
- We use a "highway" to move elements in batches into the right order.

MRPP with CFC Related Decision Problems

MRPP_{CFC}: The corresponding decision problem for general MRPP with CFC, which asks whether there exists a solution routing with a makespan bounded by a given number k.

• Motivation: automated garages, warehouse automation, ...

SnPUZ: Single Escort MRPP_{CFC}, or Synchronous nPUZ (referring to the $(n^2 - 1)$ -puzzle, which is known to be NP-hard [4], [5])

• Motivation: making full use of automated garages in locations where space is a premium

BSnPUZ: binary SnPUZ, i.e. tiles are black or white

• Motivation: rearranging quickly when exact object placement isn't important, e.g. AG pickup interval

PSnPUZ: partial SnPUZ, i.e. tiles are unique except for some number of indistinguishable white tiles

• Motivation: partially sorting AG prioritizing urgent (time or importance) pickup times

Theorem

MRPP_{CFC} is NP-hard.

Theorem

MRPP_{CFC} is NP-hard.

The same construction provides another proof of that

Theorem

Grid MRPP is NP-hard.

Theorem

MRPP_{CFC} is NP-hard.

The same construction provides another proof of that

Theorem

Grid MRPP is NP-hard.

Theorem

BSnPUZ is NP-hard.

Theorem

MRPP_{CFC} is NP-hard.

The same construction provides another proof of that

Theorem

Grid MRPP is NP-hard.

Theorem

BSnPUZ is NP-hard.

Likewise, the same construction can be used to show that

Theorem

PSnPUZ is NP-hard.

Theorem

MRPP_{CFC} is NP-hard.

The same construction provides another proof of that

Theorem

Grid MRPP is NP-hard.

Theorem

BSnPUZ is NP-hard.

Likewise, the same construction can be used to show that

Theorem

PSnPUZ is NP-hard.

The above intractability holds if we require exactly $\lfloor n^{\epsilon} \rfloor$ escorts/white tiles for a fixed constant $0 < \epsilon < 2$. In addition, they all belong to NP and thus are NP-complete.

Thanks to Jingjin Yu for his mentorship and to DIMACS for hosting the REU program and this project. This work is supported by NSF HDR TRIPODS award CCF-1934924.

- M. Szegedy and J. Yu, "Rubik tables and object rearrangement," 2023.
- T. Guo and J. Yu, "Toward efficient physical and algorithmic design of automated garages," 2023.
- T. Guo and J. Yu, "Sub-1.5 time-optimal multi-robot path planning on grids in polynomial time," 2022.
- D. Ratner and M. Warmuth, "The (n² 1)-puzzle and related relocation problems," *Journal of Symbolic Computation*, vol. 10, no. 2, pp. 111–137, 1990.
- E. D. Demaine and M. Rudoy, "A simple proof that the (n² 1)-puzzle is hard," *Theoretical Computer Science*, vol. 732, pp. 80–84, 2018.