Grid Multi-Robot Path Planning with the Corner Following Constraint: Tighter Bounds and Intractability

Marcus Gozon
Mentor: Jingjin Yu

$$
\text { July 21, } 2023
$$

Table of Contents

(1) MRPP with CFC: Tighter Bounds
(2) Intractability of Related Problems

Multi-Robot Path Planning (MRPP) Problems

Grid MRPP: Suppose you have a grid graph $G(V, E)$ and n robots with start configuration $S=\left\{s_{1}, \ldots, s_{n}\right\} \subseteq V$ and goal configuration $G=\left\{g_{1}, \ldots, g_{n}\right\} \subseteq V$. We seek to route the robots along collision-free paths P_{i} efficiently. In particular, we seek to minimize the overall makespan where motion is uniform without any meet or head-on collisions.

MRPP with CFC: Additionally, we may have a corner following constraint.

(a) Single time step move [1]

(b) Corner Following Constraint [2]

Motivation

(a) Ocado Systems ${ }^{\text {a }}$
a"Inside a Warehouse Where Thousands Of Robots Pack Groceries." Tech Insider.

(b) Automated Garages ${ }^{\text {a }}$
a "Automated Multistory Parking Facilities." Trends in Japan.

Known Results

Rubik Tables: an $m \times n$ grid can be arbitrarily permuted in three phases, permuting m rows, n columns, and then m rows again [1].

Grid MRPP: sub-1.5 time-optimal algorithms via Rubik Tables [3].

MRPP with CFC:

	$\Theta\left(m_{1} m_{2}\right)$ Escorts	$\Theta\left(m_{1}+m_{2}\right)$ Escorts	$\Theta(1)$ Escorts
Upper Bound	$\mathrm{O}\left(m_{1}+m_{2}\right)$	$O\left(m_{1} m_{2}\right)^{*}$	$-^{*}$
Lower Bound	h.p. $\Omega\left(m_{1}+m_{2}\right)$	h.p. $\Omega\left(m_{1}+m_{2}\right)$	exp. $\Omega\left(m_{1} m_{2}\right)$

Note: escorts are the empty spaces in our MRPP instance.

New Results

Theorem (Single Escort MRPP with CFC Makespan)

A given MRPP with CFC instance on an $m_{1} \times m_{2}$ grid for $m_{1}, m_{2} \geq 2$ containing a single escort can be solved in $O\left(m_{1} m_{2}\right)$ time.

This matches the $\Omega\left(m_{1} m_{2}\right)$ expected lower bound.

Theorem (k Escorts MRPP with CFC Makespan)

A given MRPP with CFC instance on an $m_{1} \times m_{2}$ grid for $m_{1}, m_{2} \geq 2$ containing $k \leq \min \left(m_{1}, m_{2}\right)$ escorts can be solved in $O\left(m_{1} m_{2} / k\right)$ time, and for $k>\min \left(m_{1}, m_{2}\right)$, it can be solved in $O\left(\max \left(m_{1}, m_{2}\right)\right)$ time.

These match the $\Omega\left(m_{1} m_{2} / k\right)$ expected lower bound and $\Omega\left(\max \left(m_{1}, m_{2}\right)\right)$ high probability lower bound respectively.

Single Escort Upper Bound

Overall Strategy: Rubik Tables
How can we efficiently simulate row and column permutations?

Single Escort Upper Bound

Overall Strategy: Rubik Tables
How can we efficiently simulate row and column permutations?

Lemma (Linear $3 \times m$ Sort)

Given a single escort, a $3 \times m$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in $O(m)$ time.

Single Escort Upper Bound

Overall Strategy: Rubik Tables
How can we efficiently simulate row and column permutations?

Lemma (Linear $3 \times m$ Sort)

Given a single escort, a $3 \times m$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in $O(m)$ time.

Lemma (Linear $2 \times m$ Sort)

Given a single escort, a $2 \times \mathrm{m}$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in $O(m)$ time.

Single Escort Upper Bound

Overall Strategy: Rubik Tables
How can we efficiently simulate row and column permutations?

Lemma (Linear $3 \times m$ Sort)

Given a single escort, a $3 \times m$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in $O(m)$ time.

Lemma (Linear $2 \times m$ Sort)

Given a single escort, a $2 \times \mathrm{m}$ grid an be arbitrarily permuted except possibly with two adjacent tiles swapped, which can be arbitrarily chosen, in $O(m)$ time.

Corollary (Linear $2 \times m$ Half-Sort)

Given a single escort, a $2 \times m$ grid can be permuted to fill one of its rows arbitrarily in $O(m)$ time.

Linear $3 \times m$ Sort

How can we permute the robots while leveraging batched movement with just a single escort?

Linear $3 \times m$ Sort

How can we permute the robots while leveraging batched movement with just a single escort?
(1) We solve a subgrid, ignoring the other elements, giving us "room" to arrange the chosen elements.
(2) We use a "highway" to move elements in batches into the right order.

18	20	21	3	23	24	22	9
10	12	4	6	5	2	8	14
17	7	19		13	16	11	15

	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24

Table of Contents

(1) MRPP with CFC: Tighter Bounds

(2) Intractability of Related Problems

MRPP with CFC Related Decision Problems

MRPP $_{\text {CFC }}$: The corresponding decision problem for general MRPP with CFC, which asks whether there exists a solution routing with a makespan bounded by a given number k.

- Motivation: automated garages, warehouse automation, ... SnPUZ: Single Escort MRPP CFC, or Synchronous nPUZ (refering to the ($n^{2}-1$)-puzzle, which is known to be NP-hard [4], [5])
- Motivation: making full use of automated garages in locations where space is a premium
BSnPUZ: binary SnPUZ, i.e. tiles are black or white
- Motivation: rearranging quickly when exact object placement isn't important, e.g. AG pickup interval
PSnPUZ: partial SnPUZ, i.e. tiles are unique except for some number of indistinguishable white tiles
- Motivation: partially sorting AG prioritizing urgent (time or importance) pickup times

New Intractability Results*

Theorem
 MRPP $_{\text {CFC }}$ is NP-hard.

New Intractability Results*

Theorem

MRPP $_{\text {CFC }}$ is NP-hard.
The same construction provides another proof of that
Theorem
Grid MRPP is NP-hard.

New Intractability Results*

Theorem

MRPP $_{\text {CFC }}$ is NP-hard.
The same construction provides another proof of that
Theorem
Grid MRPP is NP-hard.

Theorem

BSnPUZ is NP-hard.

New Intractability Results*

Theorem

MRPP $_{\text {CFC }}$ is NP-hard.
The same construction provides another proof of that
Theorem
Grid MRPP is NP-hard.

Theorem

BSnPUZ is NP-hard.
Likewise, the same construction can be used to show that

Theorem

PSnPUZ is NP-hard.

New Intractability Results*

Theorem

MRPP $_{\text {CFC }}$ is NP-hard.
The same construction provides another proof of that

Theorem

Grid MRPP is NP-hard.

Theorem

BSnPUZ is NP-hard.

Likewise, the same construction can be used to show that

Theorem

PSnPUZ is NP-hard.
The above intractability holds if we require exactly $\left\lfloor n^{\epsilon}\right\rfloor$ escorts/white tiles for a fixed constant $0<\epsilon<2$. In addition, they all belong to NP and thus are NP-complete.

Acknowledgements

Thanks to Jingjin Yu for his mentorship and to DIMACS for hosting the REU program and this project. This work is supported by NSF HDR TRIPODS award CCF-1934924.

References

R M．Szegedy and J．Yu，＂Rubik tables and object rearrangement，＂ 2023.

目 T．Guo and J．Yu，＂Toward efficient physical and algorithmic design of automated garages，＂ 2023.

T．Guo and J．Yu，＂Sub－1．5 time－optimal multi－robot path planning on grids in polynomial time，＂ 2022.

囯 D．Ratner and M．Warmuth，＂The（ $n^{2}-1$ ）－puzzle and related relocation problems，＂Journal of Symbolic Computation， vol．10，no．2，pp．111－137， 1990.

䡒 E．D．Demaine and M．Rudoy，＂A simple proof that the $\left(n^{2}-\right.$ 1）－puzzle is hard，＂Theoretical Computer Science，vol．732， pp．80－84， 2018.

