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Multi-Robot Path Planning (MRPP) Problems

Grid MRPP: Suppose you have a grid graph G (V ,E ) and n
robots with start configuration S = {s1, . . . , sn} ⊆ V and goal
configuration G = {g1, . . . , gn} ⊆ V . We seek to route the robots
along collision-free paths Pi efficiently. In particular, we seek to
minimize the overall makespan where motion is uniform without
any meet or head-on collisions.

MRPP with CFC: Additionally, we may have a corner following
constraint.

(a) Single time step move [1] (b) Corner Following Constraint [2]
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Motivation

(a) Ocado Systems a

a“Inside a Warehouse Where
Thousands Of Robots Pack
Groceries.” Tech Insider.

(b) Automated Garages a

a“Automated Multistory Parking
Facilities.” Trends in Japan.
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Known Results

Rubik Tables: an m × n grid can be arbitrarily permuted in three
phases, permuting m rows, n columns, and then m rows again [1].

Grid MRPP: sub-1.5 time-optimal algorithms via Rubik Tables [3].

MRPP with CFC:

Θ(m1m2) Escorts Θ(m1 +m2) Escorts Θ(1) Escorts

Upper Bound O(m1 +m2) O(m1m2)* -*

Lower Bound h.p. Ω(m1 +m2) h.p. Ω(m1 +m2) exp. Ω(m1m2)

Note: escorts are the empty spaces in our MRPP instance.
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New Results

Theorem (Single Escort MRPP with CFC Makespan)

A given MRPP with CFC instance on an m1 ×m2 grid for
m1,m2 ≥ 2 containing a single escort can be solved in O(m1m2)
time.

This matches the Ω(m1m2) expected lower bound.

Theorem (k Escorts MRPP with CFC Makespan)

A given MRPP with CFC instance on an m1 ×m2 grid for
m1,m2 ≥ 2 containing k ≤ min(m1,m2) escorts can be solved in
O(m1m2/k) time, and for k > min(m1,m2), it can be solved in
O(max(m1,m2)) time.

These match the Ω(m1m2/k) expected lower bound and
Ω(max(m1,m2)) high probability lower bound respectively.
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Single Escort Upper Bound

Overall Strategy: Rubik Tables
How can we efficiently simulate row and column permutations?

Lemma (Linear 3×m Sort)

Given a single escort, a 3×m grid an be arbitrarily permuted
except possibly with two adjacent tiles swapped, which can be
arbitrarily chosen, in O(m) time.

Lemma (Linear 2×m Sort)

Given a single escort, a 2×m grid an be arbitrarily permuted
except possibly with two adjacent tiles swapped, which can be
arbitrarily chosen, in O(m) time.

Corollary (Linear 2×m Half-Sort)

Given a single escort, a 2×m grid can be permuted to fill one of
its rows arbitrarily in O(m) time.
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Linear 3×m Sort

How can we permute the robots while leveraging batched
movement with just a single escort?

1 We solve a subgrid, ignoring the other elements, giving us
“room” to arrange the chosen elements.

2 We use a “highway” to move elements in batches into the
right order.
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MRPP with CFC Related Decision Problems

MRPPCFC: The corresponding decision problem for general
MRPP with CFC, which asks whether there exists a solution
routing with a makespan bounded by a given number k.

Motivation: automated garages, warehouse automation, ...

SnPUZ: Single Escort MRPPCFC, or Synchronous nPUZ (refering
to the (n2 − 1)-puzzle, which is known to be NP-hard [4], [5])

Motivation: making full use of automated garages in locations
where space is a premium

BSnPUZ: binary SnPUZ, i.e. tiles are black or white

Motivation: rearranging quickly when exact object placement
isn’t important, e.g. AG pickup interval

PSnPUZ: partial SnPUZ, i.e. tiles are unique except for some
number of indistinguishable white tiles

Motivation: partially sorting AG prioritizing urgent (time or
importance) pickup times
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New Intractability Results*

Theorem

MRPPCFC is NP-hard.

The same construction provides another proof of that

Theorem

Grid MRPP is NP-hard.

Theorem

BSnPUZ is NP-hard.

Likewise, the same construction can be used to show that

Theorem

PSnPUZ is NP-hard.

The above intractability holds if we require exactly ⌊nϵ⌋
escorts/white tiles for a fixed constant 0 < ϵ < 2. In addition, they
all belong to NP and thus are NP-complete.
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