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Introduction

We consider a finite distributive lattice L equipped with a special
probability measure function,

µ(x∨y)µ(x∧y) ≥ µ(x)µ(y)

By the FKG Inequality, for any two positive monotone functions f ,g on L,

E (xy)− E (x)E (y) ≥ 0

Essentially, positive monotone functions on a distributive lattice are
positively correlated.
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Example

Let G = (V ,E ) be a random graph on V obtained by picking every
edge, independently, with probability p.

Let P denote the property that the graph is Planar and H denote the
property that the graph is Hamiltonian.

P is a monotonically decreasing property since every graph G’ on the
same vertices which is a sub-graph of G is also planar.

H is a monotonically increasing property since every graph G on the
same vertices which contains G as a sub-graph is also Hamiltonian.

The set of edges can be viewed as a Boolean lattice and taking µ to
be the product measure, we can apply the FKG Inequality to get:

Pr(P∧H) ≤ Pr(P)Pr(H) ⇔ Pr(P|H) ≤ Pr(P)
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Expression for En

The multi-linear functional En can be viewed as an extension for the FKG
Inequality. En is defined as below:

1 Decompose a permutation σ in the symmetric group Sn as a product
of disjoint cycles:

σ = (i1, ..., ip)(j1, ..., jq)...

2 For σ as above, let Cσ denote the number of cycles in σ and define:

Eσ(f1, ..., fn) = E (fi1 , ..., fip)E (fj1 , ..., fjq)...

3 Combining the above two expressions, we get En:

En(f1, ..., fn) =
∑
σ∈Sn

(−1)Cσ−1Eσ(f1, ..., fn)
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Conjecture

Siddhartha Sahi conjectured that the multi-linear functional En is
non-negative for positive monotone functions on FKG posets. For n = 1, 2
En is non-negative.

1 n = 1:
E1(f ) = E (f ) ≥ 0

by non-negativity of f.

2 n = 2:
E2(f , g) = E (fg)− E (f )E (g) ≥ 0

by the FKG Inequality.
3 n = 3:

E3(f , g , h) = 2E (fgh)+E (f )E (g)E (h)−E (f )E (gh)−E (g)E (fh)−E (h)E (fg)

which is conjectured to be non-negative.

Mihir Dhanakshirur Extension of the FKG Inequality July 22, 2022



7/21

Expression for Fn

Fn is defined almost identically to En except instead of point-wise
multiplication of functions we take point-wise minima of functions.

We also restrict the range of the monotone Boolean functions to the
closed interval [0,1]. For example the expression for F3 is:

F3(f , g , h) = 2E (f ∗g∗h)+E (f )E (g)E (h)−E (f )E (g∗h)−E (g)E (f ∗h)−E (h)E (f ∗g)

where f ∗ g is the point-wise minima taken across all points of the Boolean
Lattice.

Showing that Fn ≥ 0 is a stronger version of the general En ≥ 0. When we
consider characteristic functions i.e., {0, 1} valued functions, Fn reduces to En.
Characteristic functions over sets are some of the simplest examples of
monotonically increasing functions and showing that En is non-negative over them
would be an important result.
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Monotone Boolean Functions

A Boolean function takes Boolean variables as input; the dimension of the
function is given by the number of Boolean variables it is a function of.

A one dimensional Boolean function can be treated as a point in [0, 1]2.
Its value at 0 gives one coordinate and its value at 1 gives the other
coordinate.

A two dimensional Boolean function can be treated as a point in [0, 1]4.
Its values at {00}, {01}, {10}, {11} give the four coordinates.

Since these functions are also monotonically increasing they must also
satisfy the condition that:

x ≤ y =⇒ f (x) ≤ f (y)
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Geometric Perspective

The set of one-dimensional monotone Boolean functions MBF1 has a
simple geometric visualization.

MBF1 = {(x , y) ∈ [0, 1]2|x ≤ y}

The set of two-dimensional monotone Boolean functions MBF2 has a
slightly more complex geometric visualization.

MBF2 = {(x1, x2, x3, x4) ∈ [0, 1]4|x1 ≤ min(x2, x3), x4 ≥ max(x2, x3)}

Fn can be understood as a function over k-space to [0, 1], where
k = n ∗ 2d and d is the dimension of each MBF.
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Quasi-concavity

Let S be a convex set. A function f : S → R is quasi-concave if for each
a, b ∈ S , f (a+ tb) ≥ min(f (a), f (b)) ∀t ∈ [0, 1].
The analog of Fn in a 2-dimensional plane is a piece-wise linear function.
In reality it is a piece-wise planar graph; Fn is almost linear except at the
points at which the min function changes its nature.
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Quasi-concavity

If a function is quasi-concave on its domain, then it is easy to see that the
function can only take its minima at the extreme points of the convex set
(points which do not lie along any line contained in the convex set).

Thus verifying non-negativity of Fn across its domain would reduce to
checking non-negativity at its extreme points.

An easy way to check quasi-concavity is to fix n − 1 functions in Fn and
vary the nth function. In this case, the convex set S is the set of all
d-dimensional MBFs.
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Counter-example for Quasi-concavity

We began testing the quasi-concave property for F3 but ended up finding a
counter-example (Here F3 is over one-dimensional MBFs).

Figure: F3 as a function of g (f0=[0.6,0.6], f1=[0.1,1])
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Counter-example for Quasi-concavity

We began testing the quasi-concave property for F3 but ended up finding a
counter-example (Here F3 is over one-dimensional MBFs).

Figure: F3 as a function of t (f0=[0.6,0.6], f1=[0.1,1], g0=[0,1], g1=[0.9,0.9])
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Searching for Minima

F3 fails the quasi-concavity test which means that it may have minima in
its non-extreme points. These putative minima may be of two kinds:

1 Zero minima: Minima at which F3 is zero

2 Non-zero minima: Minima at which F3 is positive

There are numerous examples of zero minima; the simplest one is two of
the functions being identically zero while the third one can be any function
belonging to the convex set. Then F3 is zero and the point is a non
extreme point.

Siddhartha and I began searching for an algorithm that could generate
these non-extreme non-zero minima.

Mihir Dhanakshirur Extension of the FKG Inequality July 22, 2022



15/21

Algorithm

This is the algorithm which given a random initial point, tries to decrease
F3 along connected points in the domain until it either terminates with a
zero minima or a non-zero minima. This algorithm runs for F3 for
d-dimensional MBFs. Let S ⊂ [0, 1]k denote the space of n many
d-dimensional MBFs (k = n ∗ 2d).

1 Begin with a random point p in S . p is a k-tuple.
2 Repeat until p does not change over k successive iterations.

1 For each co-ordinate of p:

1 Compute F3(p1up) and F3(p1down)
2 p = p1up if F3(p1up) ≤ F3(p1down) and p = p1down otherwise

The p obtained from the previous steps is used for the next part of the
algorithm on the next slide.
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Algorithm

1 Repeat until p does not change over n successive iterations.
1 For each of the n functions:

1 Partition the function’s co-ordinates, {1, ..., 2d}, into subsets based on
whether p has the same value for indices of the subset.

2 For each set in the partition:

1 Compute F3(p2up) and F3(p2down)
2 p = p2up if F3(p2up) ≤ F3(p2down) and p = p2down otherwise

After running the above algorithm a large number of times for d = 1 and 2
the algorithm always terminated at a zero minima. The mechanism used
by the algorithm to reduce points to zero minima motivated me to search
for a proof for showing that F3 over one-dimensional MBFs has no
non-zero minima.

Understanding the finer workings of the algorithm might provide a clue for
showing that F3 over all MBFs has no non-zero minima (no restriction on
dimension of MBFs).
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Sketch of Proof

Proposition: F3 over 1-dimensional MBFs has no non-zero minima.

Sketch of Proof:

We prove the proposition by contradiction. Suppose F3 does have a
non-zero minima, say (f1, f2, g1, g2, h1, h2).

Since this point belongs to our convex set S we have the following
restrictions: 0 ≤ fi , gi , hi ≤ 1 and f1 ≤ f2, g1 ≤ g2, h1 ≤ h2).

Despite all these restrictions, there is still freedom in the linear
ordering of the sets {f1, g1, h1} and {f2, g2, h2}.
By the symmetric nature of F3 (F3(f , g , h) = F3(g , f , h) = ..),
w.l.o.g. we can also assume f1 ≤ g1 ≤ h1

This leaves us with six cases based on the ordering of {f2, g2, h2}
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Sketch of Proof

The co-ordinate wise orderings are important since they give an
explicit formula for F3. By looking at the sign of the coefficients of
these co-ordinates we can claim that these co-ordinates must in fact
be 0 or 1.

Reductions of this type result in finally arriving at a contradiction:
Step by step we impose that certain co-ordinates take specific values
like 0 or 1 (the violation of which would contradict minimality of the
point) and finally show that these steps lead to a zero minima, thus
contradicting our initial assumption that the point was a non-zero
minima.

By considering these 6 broad cases, this argument holds true in
general for any point belonging to S .
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Conclusion

Studying the nature of the minima of Fn is an important step in
attempting to show that Fn is non-negative.

I have successfully showed that F3 over one-dimensional MBFs has no
non-zero minima.

Studying how the algorithm eventually reaches a zero minima for F3
over any MBF will provide an insight into a potential argument for a
formal proof.

A correlation inequality in 3 monotone functions has applications in
probability theory, combinatorics, stochastic processes and statistical
mechanics.

It would be exciting to see a stronger version of E3 being applied in
areas like uniform random spanning tree measures, symmetric
exclusion processes, random cluster models (with q < 1), balanced
and Rayleigh matroids.
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