
Week 5 Progress Report

Presenter: Matt Behnke
Mentor: Dr. Guo

Table of Contents

1. Learning and Using Principal Component Analysis (PCA)

2. Further Exploring the Random Forest Method

3. Trying more Neural Network Models

4. Future Steps and Goals

Principal Component Analysis
(PCA)

1. Quick Understanding and Purpose

2. Visualizations and Metrics Received

3. How to further use data?

Initial Research and Understanding of PCA

● For high dimensional data, PCA is a method used to reduce the number of variables in data by

extracting the important features from a large pool.

● PCA combines variables that are highly correlated together and form groups called ‘principal

components’ that accounts for most variance in data

● Helps avoid overfitting by focusing on principal components instead of learning from

non-important features
○ ‘Denoising’

● In our dataset, find features (areas or pixels) that are most important in determining if it the melt

pool will result in a good or bad part

Using PCA on Images
● First, to know that it is valid to use PCA on

images, I read PCA Application to images by Dr.

Hlavac from Czech Technical University in

Prague

● Asserts that images can be used in PCA, as they

can be converted to a one-dimensional vector by

row-by-row or column-by-column

concatenation

● Like our dataset, a grayscale image is a matrix of

values with pixels corresponding to a value (the

image on the slide represents intensity in the

photo, our dataset a pixel represents a

corresponding temperature)

Achieving a Desirable Variance

● PCA wants to account for the most variability possible in the

dataset so that you can get unique features of the dataset
○ Choosing a number of components is important for PCA because it

can yield a certain of variance
○ 95% variance seems to be a common for PCA models

● Instead of manually picking components, we can use

visualization to figure out how many components to pick

Code for Graph on Next Slide

 Variance Formula Choosing Components

40 Components

Finding Important Features

● For each component, every feature has a

magnitude of its corresponding values of its

eigenvector
○ Bigger the magnitude, the more important it is

● To find these important components
○ Take the absolute value to get a magnitude
○ Sort by largest to smallest
○ Resulting in most important features being at

top of list

● Added a (row, column) to see side-by-side how

important each pixel is

● Took the top 10 most influential pixels for each

component

Summary of PCA Results

● For Modes (position, instances)
○ Position is either its x or y position
○ Instances is how many time that

position occurred

● Can see the magnitude of an

eigenvector (importance) next to its

row, column coordinates

● Took x and y averages of top 10

most important features

● Took averages of the 40

componentes x and y averages

● y = 42, showed up a lot as a mode

Code for Summary of PCA Results

Random Forest Exploration

1. Why further explore Random Forest Classifier

2. Understanding of Vectorizing a Matrix

3. More testing and results of Random Forest for various parameters

Why further explore Random Forest Classifier?

● Had very high accuracy (above 99% accuracy in classifying)

● Had very fast time compared to other ensemble methods

● Test to see if it can if the first trial was dumb luck or if it can be

repeated

● Address whether vectorizing a matrix would lose relationships

from the data

Vectorizing a Matrix Keeps Order and Relationship

→ Flatten

(0,0) (0,249) (249,0) (249,249)

From Vector to Matrix
● Row = Vectorᵢ / 250
● Column = Vectorᵢ % 250
● In Matrix: (Row, Column) Order

From Matrix to Vector
● Vectorᵢ = Row * 250 + Column

Conversion FormulasExample Python Code

Testing Random Forest Classifier

Procedure

● 100 Total Trials

● 25 Trials each for
○ 50/50 Train/Test Split
○ 60/40 Train/Test Split
○ 70/30 Train/Test Split
○ 80/20 Train/Test Split

● Every trial a new data split will be calculated to ensure

random splits

Outcomes

For each type of train/test split over 25 trials:

1. Average Accuracy Score
2. Average Cross Validation Score
3. Average Time Taken per Trial

Code for Testing Random Forest Classifier

Results for Testing Random Forest
● Highest average accuracy was 60/40 Train/Test split

○ Accuracy of 99.821…%

● Lowest average accuracy was 50/50 Train/Test split
○ Accuracy of 99.569…%

● Time went up with the greater the split towards

training
○ Logically, this makes sense as the model has more to data

values to train on, the longer it will take

Visualizing a Decision Tree in a Random Forest Classifier

Trying More Neural Networks

1. Overview of what parameters and architectures I was using

2. Overview of code and results of a currently successful model

3. Need for more testing

Trying different Models Tried

● A lot of time was spent editing different parameters from last weeks neural network (ave 79% test

accuracy over 10 trials)

● Different parameters included:
○ Epochs
○ Batch Size
○ Learning Rate
○ Optimizers
○ Activation Functions
○ Many Hidden Layers
○ Few Hidden Layers
○ Different Types of Layer
○ Batch Normalization
○ Dropout Rates

A Promising Result
1.

2.

3.

 4.

 5.

5 Trials of
● 70/30 Train/Test Split

○ Every trial had a
different split

● Every trail had a test
accuracy of 100%

● 20 Epochs
● Batch Size of 32

The Model’s Architecture / Code

● Uses ‘blocks’ of Conv2D,

MaxPooling2D, and

Batch Normalization

● Finally flattens to a

dense layer

● Uses SGD optimizer

● Every layer but the final

layer uses relu

● Final layer uses sigmoid

Need to Further Test This Model

● Got first promising results for this model yesterday (6/24)

● Need to test:
○ Different train/test split ratios
○ More Epoch Sizes

■ Originally tested 5 epochs, that had lower accuracy scores
■ 20 Epochs was the text value tested, which yielded very good accuracy scores

○ Batch Size

● Essentially, test this model more thoroughly like the Random Forest Classifier

Future Steps and
Goals

● Test the new neural network model more

thorough and give results

● What to do with PCA data / results?

● Suffering from Black Box Testing when

construction Neural Networks
○ Advice?

● Ultimate Goal of Project Clarification
○ Should the final model be a neural network, or

whatever ascertains a high classification
accuracy?

● Any obvious next steps?

Also Google Colab has Corgi
Mode, it’s great =)

