Week 5 Progress Report

Presenter: Matt Behnke Mentor: Dr. Guo

Table of Contents

- 1. Learning and Using Principal Component Analysis (PCA)
- 2. Further Exploring the Random Forest Method
- 3. Trying more Neural Network Models
- 4. Future Steps and Goals

Principal Component Analysis (PCA)

- 1. Quick Understanding and Purpose
- 2. Visualizations and Metrics Received
- 3. How to further use data?

Initial Research and Understanding of PCA

- For high dimensional data, PCA is a method used to reduce the number of variables in data by extracting the important features from a large pool.
- PCA combines variables that are highly correlated together and form groups called 'principal components' that accounts for most variance in data
- Helps avoid overfitting by focusing on principal components instead of learning from non-important features
 - 'Denoising'
- In our dataset, find features (areas or pixels) that are most important in determining if it the melt pool will result in a good or bad part

Using PCA on Images

Principal Component Analysis (PCA) Application to images

Václav Hlaváč

Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics

Can we use PCA for images?

- It took a while to realize (Turk, Pentland, 1991), but yes.
- Let us consider a 321×261 image.

- The image is considered as a very long 1D vector by concatenating image pixels column by column (or alternatively row by row), i.e. 321 × 261 = 83781.
- The huge number 83781 is the dimensionality of our vector space.
- The intensity variation is assumed in each pixel of the image.

- First, to know that it is valid to use PCA on images, I read PCA Application to images by Dr. Hlavac from Czech Technical University in Prague
- Asserts that images can be used in PCA, as they can be converted to a one-dimensional vector by row-by-row or column-by-column concatenation
- Like our dataset, a grayscale image is a matrix of values with pixels corresponding to a value (the image on the slide represents intensity in the photo, our dataset a pixel represents a corresponding temperature)

Achieving a Desirable Variance

Code for Graph on Next Slide

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data_rescaled = scaler.fit_transform(x_old)
pca2 = PCA().fit(data_rescaled)
plt.rcParams["figure.figsize"] = (30,30)

fig, ax = plt.subplots()
xi = np.arange(0, 2674, step=1)
y = np.cumsum(pca2.explained_variance_ratio_)

plt.ylim(0.0,1.1)
plt.plot(xi, y, marker='o', linestyle='--', color='b')

plt.xlabel('Number of Components')
plt.xticks(np.arange(0, 2674, step=40))
plt.ylabel('Cumulative variance (%)')
plt.title('The number of components needed to explain variance')

plt.axhline(y=0.95, color='r', linestyle='-')
plt.text(0.5, 0.85, '95% cut-off threshold', color = 'red', fontsize=16)

ax.grid(axis='x')

- PCA wants to account for the most variability possible in the dataset so that you can get unique features of the dataset
 - Choosing a number of components is important for PCA because it can yield a certain of variance
 - 95% variance seems to be a common for PCA models
- Instead of manually picking components, we can use visualization to figure out how many components to pick

Variance Formula

 $\sum (x_i - \bar{x})^2$ S^2 -

Choosing Components

from sklearn import decomposition
from sklearn.decomposition import PCA

pca = PCA(n_components=40)

Finding Important Features

Find important features

```
most_important_features = list()
for component in pca.components_:
    index = 0
    tempList = list()
    for feature in component:
    row = index // 250
    column = index % 250
    tempList.append((abs(feature) , (row, column)))
    index += 1
```

tempList.sort(reverse=True)
most_important_features.append([tempList[x] for x in range(10)])

- For each component, every feature has a magnitude of its corresponding values of its eigenvector
 - Bigger the magnitude, the more important it is
- To find these important components
 - Take the absolute value to get a magnitude
 - Sort by largest to smallest
 - Resulting in most important features being at top of list
- Added a (row, column) to see side-by-side how important each pixel is
- Took the top 10 most influential pixels for each component

Summary of PCA Results

Total X Ave = 108.21951219512195 Total Y Ave = 57.46585365853658

Component 6

[(0.09226205001661351, (191, 42)), (0.08857704421238168, (141, 42)), (0.07783892723328956, (1, 117)), (0.0743088303359767, (106, 112)), (0.06: X Mode = [(191, 1), (141, 1), (1, 1), (106, 1), (217, 1), (10, 1), (28, 1), (4, 1), (58, 1), (172, 1)] | Y Mode = [(42, 4)] X Ave = 92.8 | Y Ave = 92.1

Component 7

[(0.16035758617914145, (158, 42)), (0.1129284033191318, (170, 42)), (0.11148113374397745, (0, 42)), (0.1112104781257541, (75, 42)), (0.105116: X Mode = [(158, 1), (170, 1), (0, 1), (75, 1), (244, 1), (221, 1), (53, 1), (40, 1), (194, 1), (97, 1)] | Y Mode = [(42, 6)] X Ave = 125.2 | Y Ave = 54.0

Component 8

[(0.1812990210483322, (17, 42)), (0.1702388360333583, (25, 42)), (0.1615332465251595, (0, 42)), (0.1504909244751474, (182, 42)), (0.140310415! X Mode = [(17, 1), (25, 1), (0, 1), (182, 1), (43, 1), (171, 1), (188, 1), (75, 1), (53, 1), (111, 1)] | Y Mode = [(42, 8)] X Ave = 86.5 | Y Ave = 75.5

Component 9

[(0.1004579267898733, (213, 42)), (0.00376278149000422, (44, 42)), (0.08948275930191729, (9, 26)), (0.08888075600852027, (220, 214)), (0.08661 X Mode = [(213, 1), (44, 1), (9, 1), (220, 1), (0, 1), (209, 1), (207, 1), (43, 1), (64, 1), (53, 1)] | Y Mode = [(42, 5)] X Ave = 106.2 | Y Ave = 81.2

Component 10

[(0.16475976295418504, (217, 42)), (0.12881073712126304, (2, 42)), (0.11935895535266505, (31, 42)), (0.11705941189163369, (191, 42)), (0.1142: X Mode = [(217, 1), (2, 1), (31, 1), (191, 1), (0, 1), (140, 1), (182, 1), (42, 1), (101, 1), (170, 1)] | Y Mode = [(42, 9)] X Ave = 107.6 | Y Ave = 37.9

Component 11

[(0.15102827816400138, (138, 68)), (0.13027190458561, (109, 42)), (0.11129183941181499, (44, 42)), (0.10124925478676165, (76, 42)), (0.0976921 X Mode = [(138, 1), (109, 1), (44, 1), (76, 1), (13, 1), (111, 1), (201, 1), (140, 1), (30, 1), (82, 1)] | Y Mode = [(42, 8)] X Ave = 94.4 | Y Ave = 41.7

- For Modes (position, instances)
 - Position is either its x or y position
 - Instances is how many time that position occurred
- Can see the magnitude of an eigenvector (importance) next to its row, column coordinates
- Took x and y averages of top 10 most important features
- Took averages of the 40 componentes x and y averages
- y = 42, showed up a lot as a mode

Code for Summary of PCA Results

```
def findMode(important_component):
```

```
x_dict = dict()
y_dict = dict()
high_x_instances = 1
high_y_instances = 1
for feature in important_component:
    x_feat = feature[1][0]
    y_feat = feature[1][1]
    try:
        x_dict[x_feat] += 1
        if high_x_instances < x_dict[x_feat]:
        high_x_instances = x_dict[x_feat]
except:
        x_dict[x_feat] = 1</pre>
```

try: y_dict[y_feat] += 1 if high_y_instances < y_dict[y_feat]: high_y_instances = y_dict[y_feat] except: y_dict[y_feat] = 1 x_modes = list() y_modes = list() for key, value in x dict.items():

if value == high x instances:

for key, value in y dict.items():

return x modes, y modes

x modes.append((key, value))

```
def findAve(important_component):
    x_ave = 0
    y_ave = 0
    index = 0
    for feature in important_component:
        x_ave += feature[1][0]
        y_ave += feature[1][1]
        index += 1
    return x_ave/index, y_ave/index
```

```
# Show Results
component_num = 1
x_total_ave = 0
y_total_ave = 0
for component in most_important_features:
    print("Component {}".format(component_num))
    print(component)
    modes = findMode(component)
    aves = findAve(component)
    print("X Mode = {0} | Y Mode = {1}".format(modes[0], modes[1]))
    print("X Ave = {0} | Y Ave = {1}\n".format(aves[0], aves[1]))
    x_total_ave += aves[0]
    y_total_ave += aves[1]
    component_num += 1
print("Total X Ave = {0}".format(x total ave/component num))
```

print("Total Y Ave = {0}".format(y_total_ave/component_num))

Random Forest Exploration

- 1. Why further explore Random Forest Classifier
- 2. Understanding of Vectorizing a Matrix
- 3. More testing and results of Random Forest for various parameters

Why further explore Random Forest Classifier?

- Had very high accuracy (above 99% accuracy in classifying)
- Had very fast time compared to other ensemble methods
- Test to see if it can if the first trial was dumb luck or if it can be repeated
- Address whether vectorizing a matrix would lose relationships from the data

RandomEorest(lassifier	· - ·		1
Accuracy : 0.	998878923766	8162		
CV Score : 0.	996153846153	8464		
AUC Score :	0.0			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	465
1	1.00	1.00	1.00	427
accuracy			1.00	892
macro avg	1.00	1.00	1.00	892
weighted avg	1.00	1.00	1.00	892
[[464 1] [0 427]]				

Time Taken : 15.212837219238281 seconds

Vectorizing a Matrix Keeps Order and Relationship

Testing Random Forest Classifier

<u>Procedure</u>

- 100 Total Trials
- 25 Trials each for
 - 50/50 Train/Test Split
 - 60/40 Train/Test Split
 - 70/30 Train/Test Split
 - 80/20 Train/Test Split
- Every trial a new data split will be calculated to ensure random splits

<u>Outcomes</u>

For each type of train/test split over 25 trials:

- 1. Average Accuracy Score
- 2. Average Cross Validation Score
- 3. Average Time Taken per Trial

Code for Testing Random Forest Classifier

def splitData(split_num):

xTrain, xTest, yTrain, yTest = train_test_split(cropInData, outData, test_size = split_num, random_state = 0) dataset_size = len(xTrain) test_size = len(xTest) xTrain2 = np.array(xTrain) xTrain2 = np.expand_dims(xTrain2, -1) xTest2 = np.array(xTest) xTest2 = np.array(yTest) xTest2 = np.array(yTrain) yTest2 = np.array(yTrain) yTest2 = np.array(yTrain) yTest2 = np.array(yTest) X_train3 = xTrain2.reshape(dataset_size, -1) Y_train3 = yTrain2.reshape(dataset_size, -1) X_test3 = xTest2.reshape(test_size, -1) Y_test3 = yTest2.reshape(test_size, -1) return X_train3, Y_train3, X_test3, Y_test3

ave_time_1 = 0
ave_time_2 = 0
ave_time_3 = 0
ave_time_4 = 0
accu_1 = 0
accu_2 = 0
accu_3 = 0
accu_4 = 0
cv1 = 0
cv2 = 0
cv3 = 0
cv4 = 0

for x in range(100): model = RandomForestClassifier(n estimators =10) if x < 25: # 50/50 Train/Test Split x train, y train, x test, y test = splitData(.5) elif x < 50: # 60/40 Train/Test Split x train, y train, x test, y test = splitData(.4) elif x < 75: # 70/30 Train/Test Split x train, y train, x test, y test = splitData(.3) else: # 80/20 Train/Test Split x_train, y_train, x_test, y_test = splitData(.2) t0 = time.time()model.fit(x train,y train) y pred = model.predict(x test) proba = model.predict proba(x test) roc_score = roc_auc_score(y_test, proba[:,1]) cv score = cross val score(model, x train, y train, cv=10).mean() score = accuracy_score(y_test,y_pred) bin clf rep = classification report(y test, y pred, zero division=1) if x < 25: accu 1 += score ave_time_1 += time.time()-t0 cv1 += cv score elif x < 50: accu 2 += score ave time 2 += time.time()-t0 cv2 += cv score elif x < 75: accu 3 += score ave_time_3 += time.time()-t0 cv3 += cv score else: accu 4 += score ave time 4 += time.time()-t0 cv4 += cv score print("Trial {0} with accuracy of {1}\n".format(x+1, score))

Results for Testing Random Forest

50/50 Split

Ave	Accuracy =	0.9956931359353969	
Ave	CV Score =	0.9948781062942138	
Ave	Time Taken	= 10.085623331069947	seconds

60/40 Split

Ave Accuracy = 0.9982169890664423 Ave CV Score = 0.9948219195279643 Ave Time Taken = 12.004673089981079 seconds

70/30 Split

Ave Accuracy = 0.997892376681614 Ave CV Score = 0.9959807692307691 Ave Time Taken = 13.799284038543702 seconds

80/20 Split

Ave Accuracy = 0.9975126050420168 Ave CV Score = 0.9963454242456479 Ave Time Taken = 15.548892192840576 seconds Highest average accuracy was 60/40 Train/Test split
 Accuracy of 99.821...%

- Lowest average accuracy was 50/50 Train/Test split
 - Accuracy of 99.569...%
- Time went up with the greater the split towards training
 - Logically, this makes sense as the model has more to data values to train on, the longer it will take

Visualizing a Decision Tree in a Random Forest Classifier

Convert to png using system command (requires Graphviz)
call(['dot', '-Tpng', 'tree.dot', '-o', 'tree.png', '-Gdpi=600'])

Display in jupyter notebook
Image(filename = 'tree.png')

Trying More Neural Networks

- 1. Overview of what parameters and architectures I was using
- 2. Overview of code and results of a currently successful model
- 3. Need for more testing

Trying different Models Tried

- A lot of time was spent editing different parameters from last weeks neural network (ave 79% test accuracy over 10 trials)
- Different parameters included:
 - Epochs
 - Batch Size
 - Learning Rate
 - Optimizers
 - Activation Functions
 - Many Hidden Layers
 - Few Hidden Layers
 - Different Types of Layer
 - Batch Normalization
 - Dropout Rates

A Promising Result

```
478/478 [======] - 0s 656us/step
    test loss, test acc: [0.0007525471131177035, 1.0]
1.
     478
    Actual value = 1 | Prediction = 0.9998002648353577 | Precition Rounded = 1.0
     478/478 [=======] - 0s 661us/step
     test loss, test acc: [0.0010028247639661553, 1.0]
2.
     478
     Actual value = 1 | Prediction = 0.9997267127037048 | Precition Rounded = 1.0
     Actual value = 0 | Prediction = 4.4352535041980445e-05 | Precition Rounded = 0.0
     478/478 [=========] - 0s 658us/step
     test loss, test acc: [0.0006307436167418364, 1.0]
3.
     478
     Actual value = 1 | Prediction = 0.9997641444206238 |
                                                        Precition Rounded = 1.0
     Actual value = 0 | Prediction = 0.0001633794599911198 | Precition Rounded = 0.0
     test loss, test acc: [0.0006265214261517053, 1.0]
4.
     478
     Actual value = 1 | Prediction = 0.999890923500061
                                                           Precition Rounded = 1.0
                                                     coronona | possible
      478/478 [======] - 0s 662us/step
      test loss, test acc: [0.0006233096327564472, 1.0]
5.
      478
      Actual value = 1 | Prediction = 0.9998434782028198 |
                                                      Precition Rounded = 1.0
```

5 Trials of

- 70/30 Train/Test Split
 - Every trial had a Ο different split
- Every trail had a test accuracy of 100%
- 20 Epochs
- Batch Size of 32

The Model's Architecture / Code

def model5():

model = Sequential()

Input Layer

model.add(Conv2D(32, kernel_size = (3, 3), activation='relu', input_shape=(250, 250, 1)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

Hidden 1

model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

Hidden 2

model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

Hidden 3

model.add(Conv2D(96, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

Hidden 4

model.add(Conv2D(32, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Oropout(0.2))

Hidden 5

model.add(Flatten())
model.add(Dense(128, activation='relu'))

Output Layer
model.add(Dense(1, activation = 'sigmoid'))

Compile Model

sgd = SGD(lr = .01)
model.compile(loss = 'binary_crossentropy', optimizer = sgd, metrics = ['accuracy'])
model.summary()
return model

Model: "sequential_14"

Layer (type)	Output	Shape	Param #
conv2d_54 (Conv2D)	(None,	248, 248, 32)	320
max_pooling2d_50 (MaxPooling	(None,	124, 124, 32)	0
batch_normalization_58 (Batc	(None,	124, 124, 32)	128
conv2d_55 (Conv2D)	(None,	122, 122, 64)	18496
max_pooling2d_51 (MaxPooling	(None,	61, 61, 64)	0
batch_normalization_59 (Batc	(None,	61, 61, 64)	256
conv2d_56 (Conv2D)	(None,	59, 59, 64)	36928
max_pooling2d_52 (MaxPooling	(None,	29, 29, 64)	0
batch_normalization_60 (Batc	(None,	29, 29, 64)	256
conv2d_57 (Conv2D)	(None,	27, 27, 96)	55392
max_pooling2d_53 (MaxPooling	(None,	13, 13, 96)	0
batch_normalization_61 (Batc	(None,	13, 13, 96)	384
conv2d_58 (Conv2D)	(None,	11, 11, 32)	27680
max_pooling2d_54 (MaxPooling	(None,	5, 5, 32)	0
batch_normalization_62 (Batc	(None,	5, 5, 32)	128
dropout_26 (Dropout)	(None,	5, 5, 32)	0
flatten_14 (Flatten)	(None,	800)	0
dense_27 (Dense)	(None,	128)	102528
dense_28 (Dense)	(None,	1)	129

Non-trainable params: 576

- Uses 'blocks' of Conv2D, MaxPooling2D, and Batch Normalization
- Finally flattens to a dense layer
- Uses SGD optimizer
- Every layer but the final layer uses relu
- Final layer uses sigmoid

Need to Further Test This Model

- Got first promising results for this model yesterday (6/24)
- Need to test:
 - Different train/test split ratios
 - More Epoch Sizes
 - Originally tested 5 epochs, that had lower accuracy scores
 - 20 Epochs was the text value tested, which yielded very good accuracy scores
 - Batch Size
- Essentially, test this model more thoroughly like the Random Forest Classifier

Future Steps and Goals

Álso Google Colab has Corgi Mode, it's great =)

- Test the new neural network model more thorough and give results
- What to do with PCA data / results?
- Suffering from Black Box Testing when construction Neural Networks
 - Advice?
- Ultimate Goal of Project Clarification
 - Should the final model be a neural network, or whatever ascertains a high classification accuracy?
- Any obvious next steps?