Week 5 Progress Report

Presenter: Matt Behnke
Mentor: Dr. Guo

Table of Contents

Learning and Using Principal Component Analysis (PCA)
Further Exploring the Random Forest Method

Trying more Neural Network Models

Future Steps and Goals

LW

Principal Component Analysis
(PCA)

1. Quick Understanding and Purpose
2. Visualizations and Metrics Received

3. How to further use data?

Initial Research and Understanding of PCA

For high dimensional data, PCA is a method used to reduce the number of variables in data by
extracting the important features from a large pool.
PCA combines variables that are highly correlated together and form groups called ‘principal
components’ that accounts for most variance in data
Helps avoid overfitting by focusing on principal components instead of learning from
non-important features

o ‘Denoising’
In our dataset, find features (areas or pixels) that are most important in determining if it the melt
pool will result in a good or bad part

Using PCA on Images

Principal Component Analysis (PCA)
Application to images

Viclav Hlavaé

Czech Technical University in Prague

Czech Institute of Informatics, Robotics and Cybernetics

Can we use PCA for images?

17/

@ |t took a while to realize (Turk, Pentland, 1991),

@ Let us consider a 321 x 261 image.

® The image is considered as a very long 1D vector by concatenating image
pixels column by column (or alternatively row by row), i.e.
321 x 261 = 83781.

@ The huge number 83781 is the dimensionality of our vector space.

® The intensity variation is assumed in each pixel of the image.

First, to know that it is valid to use PCA on
images, | read PCA Application to images by Dr.
Hlavac from Czech Technical University in
Prague

Asserts that images can be used in PCA, as they
can be converted to a one-dimensional vector by
row-by-row or column-by-column
concatenation

Like our dataset, a grayscale image is a matrix of
values with pixels corresponding to a value (the
image on the slide represents intensity in the
photo, our dataset a pixel represents a
corresponding temperature)

Achieving a Desirable Variance

Code for Graph on Next Slide

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

data_rescaled = scaler.fit_transform(x_old)
pca2 = PCA().fit(data_rescaled)
plt.rcParams["figure.figsize"] = (30,30)

fig, ax = plt.subplots()
xi = np.arange(®, 2674, step=1)
y = np.cumsum(pca2.explained_variance_ratio_)

plt.ylim(@.0,1.1)
plt.plot(xi, y, marker='0', linestyle='--', color="b")

plt.xlabel('Number of Components')

plt.xticks(np.arange(0, 2674, step=46)ﬂ

plt.ylabel('Cumulative variance (%)')

plt.title('The number of components needed to explain variance')

plt.axhline(y=0.95, color="r', linestyle='-")
plt.text(@.5, ©.85, "95% cut-off threshold', color = 'red', fontsize=16)

ax.grid(axis="x")

PCA wants to account for the most variability possible in the

dataset so that you can get unique features of the dataset
Choosing a number of components is important for PCA because it

52_

@)

@)

canyield a certain of variance

95% variance seems to be a common for PCA models
Instead of manually picking components, we can use
visualization to figure out how many components to pick

Variance Formula

> (w; —)?

n—1

Choosing Components

from sklearn import decomposition
from sklearn.decomposition import PCA

pca = PCA(n_components=40)

oo

The number of components needed to explain variance

gty
[

% cutroff threshold

40 Components

Finding Important Features

e For each component, every feature has a

¥ Lind Jepartint seatieee magnitude of its corresponding values of its
most_important_features = list() .
for component in pca.components_: eigenvector
i::;’:i:te_ e o Bigger the magnitude, the more important it is
for feature in component: e To find these important components
row = index // 250 o Takethe absolute value to get a magnitude

column = index % 250 S by | I
tempList.append((abs(feature) , (row, column))) © ort by largest to smallest
index += 1 o Resulting in most important features being at

top of list
5 e Added a (row, column) to see side-by-side how
important each pixel is
e Took the top 10 most influential pixels for each
component

tempList.sort(reverse=True)
most_important_features.append([tempList[x] for x in range(18)

Summary of PCA Results

Total X Ave
Total Y Ave

108.21951219512195
57.46585365853658

Component 6

[(0.09226205001661351, (191, 42)), (0.88857704421238168, (141, 42)), (0.07783892723328956, (1, 117)), (0.0743088303359767, (106, 112)), (0.86.
X Mode = [(191, 1), (141, 1), (1, 1), (106, 1), (217, 1), (10, 1), (28, 1), (4, 1), (58, 1), (172, 1)] | Y Mode = [(42, 4)]

X Ave = 92.8 | Y Ave = 92.1 -

Component 7

[(0.16035758617914145, (158, 42)), (0.1129284033191318, (170, 42)), (9.11148113374397745, (e, 42)), (0.1112104781257541, (75, 42)), (9.1@5116:
X Mode = [(158, 1), (170, 1), (8, 1), (75, 1), (244, 1), (221, 1), (53, 1), (48, 1), (194, 1), (97, 1)] | ¥ Mode = [(42, 6)]

X Ave = 125.2 | Y Ave = 54.0

Component 8

[(0.1812990210483322, (17, 42)), (.1702388360333583, (25, 42)), (0.1615332465251595, (8, 42)), (0.1504909244751474, (182, 42)), (0.140310415!
X Mode = [(17, 1), (25, 1), (8, 1), (182, 1), (43, 1), (171, 1), (188, 1), (75, 1), (53, 1), (111, 1)] | ¥ Mode = [(42, 8)]

X Ave = 86.5 | Y Ave = 75.5

Component 9

[(0.1004579267898733, (213, 42)), (.89376278149000422, (44, 42)), (.08948275930191729, (9, 26)), (0.08888075600852027, (220, 214)), (0.0866!
X Mode = [(213, 1), (44, 1), (9, 1), (220, 1), (0, 1), (209, 1), (207, 1), (43, 1), (64, 1), (53, 1)] | Y Mode = [(42, 5)]

X Ave = 106.2 | Y Ave = 81.2 -

Component 10

[(0.16475076295418504, (217, 42)), (0.1288173712126304, (2, 42)), (.11935895535266505, (31, 42)), (0.11705941189163369, (191, 42)), (.1142;
X Mode = [(217, 1), (2, 1), (31, 1), (191, 1), (@, 1), (140, 1), (182, 1), (42, 1), (101, 1), (178, 1)] | Y Mode = [(42, 9)]

X Ave = 107.6 | Y Ave = 37.9 —

Component 11

[(0.15102827816400138, (138, 68)), (6.13027190458561, (109, 42)), (0.11129183941181499, (44, 42)), (0.10124925478676165, (76, 42)), (0.097692
X Hode = [(138, 1), (169, 1), (44, 1), (76, 1), (13, 1), (111, 1), (201, 1), (149, 1), (30, 1), (82, 1)] | Y Mode = [(42, 8))]

X Ave =94.4 | Y Ave = 41.7

For Modes (position, instances)
o Positionis either its x or y position
o Instancesis how many time that
position occurred

Can see the magnitude of an
eigenvector (importance) next to its
row, column coordinates

Took x and y averages of top 10
most important features

Took averages of the 40
componentes x and y averages

y =42, showed up alot as a mode

Code for Summary of PCA Results

def findMode(important_component):
x_dict = dict()
y_dict = dict()
high_x_instances = 1
high_y instances = 1
for feature in important_component:
x_feat = feature[1][@]
y_feat = feature[1][1]
try:
x_dict[x_feat] += 1

if high_x_instances < x_dict[x_feat]:

high_x_instances = x_dict[x_feat]
except:
x_dict[x_feat] =1

try:
y_dict[y_feat] += 1

if high_y_instances < y dict[y_feat]:

high_y_instances = y_dict[y_feat]
except:
y_dict[y_feat] = 1

x_modes = list()
y_modes = list()
for key, value in x_dict.items():
if value == high_x_instances:
x_modes.append((key, value))
for key, value in y_dict.items():
if value == high_y_instances:
y_modes.append((key, value))
return x_modes, y_modes

def findAve(important_component):

X_ave = 0
y_ave = @
index = ©

for feature in important_component:
Xx_ave += feature[1][8]
y_ave += feature[1][1]
index += 1

return x_ave/index, y_ave/index

Show Results
component_num =
x_total_ave = @
y_total_ave = ©
for component in most_important_features:

print("Component {}".format(component_num))

print(component)

modes = findMode(component)

aves = findAve(component)

print("X Mode = {8} | Y Mode = {1}".format(modes[®], modes[1]))

print("X Ave = {@} | Y Ave = {1}\n".format(aves[@], aves[1]))

x_total_ave += aves[@]

y_total_ave += aves[1]

component_num += 1

print("Total X Ave = {8}".format(x_total_ave/component_num))
print("Total Y Ave = {8}".format(y_total_ave/component_num))

Random Forest Exploration

1. Why further explore Random Forest Classifier
2. Understanding of Vectorizing a Matrix

3. More testing and results of Random Forest for various parameters

Why further explore Random Forest Classifier?

e Had very high accuracy (above 99% accuracy in classifying)

e Had very fast time compared to other ensemble methods

e Testtoseeifitcanifthe first trial was dumb luck or if it can be
repeated

e Address whether vectorizing a matrix would lose relationships
from the data

RandomForestClassifier
Accuracy : ©.9988789237668162
CV Score : ©.9961538461538464
AUC Score : 0.0

precision recall fi-score

2 1.00 1.00 1.ee

1 1.00 1.00 1.00

accuracy 1.00
macro avg 1.00 1.e0 1.e0
weighted avg 1.00 1.08 1.00

[[464 1]
[e 427]]
Time Taken : 15.212837219238281 seconds

support

465
427

892
892
892

Vectorizing a Matrix Keeps Order and Relationship

(0,0) (0, 249)

data =

(249, 0) (249, 249)

Flatten

— 249

T
(0,249)

62250

t
(249,0)

vector = |0 62499

t t
(0,0) (249,249)

Example Python Code

> X = [4, 5, 6]1])

np.array([[1, 2, 3],
>>> np.ravel(x)

array([1, 2, 3, 4, 5, 6])

A\

Conversion Formulas

From Vector to Matrix From Matrix to Vector
e Row = Vector;/ 250 e Vectori =Row * 250 + Column
e Column = Vectori % 250
e |n Matrix: (Row, Column) Order

Testing Random Forest Classifier

Procedure Outcomes
100 Total Trials For each type of train/test split over 25 trials:
25 Trials each for
o 50/50 Train/Test Split 1. Average Accuracy Score
o 60/40 Train/Test Split 2. Average Cross Validation Score
o 70/30 Train/Test Split 3. Average Time Taken per Trial

o 80/20 Train/Test Split
Every trial a new data split will be calculated to ensure

random splits

Code for Testing Random Forest Classifier

def splitData(split_num): for x in range(100):
xTrain, xTest, yTrain, yTest = train_test_split(cropInData, outData, test_size = split_num, random_state = 8) model = RandomForestClassifier(n_estimators =10)
dataset_size = len(xTrain) 3F x < 25:

506/56 Train/Test Split

x_train, y_train, x_test, y test = splitData(.5)
elif x < 50:

60/40 Train/Test Split

x_train, y_train, x_test, y_test = splitData(.4)
elif x < 751

70/3@ Train/Test Split

x_train, y_train, x_test, y test = splitData(.3)

test_size = len(xTest)

xTrain2 = np.array(xTrain)

xTrain2 = np.expand_dims(xTrain2, -1)
xTest2 = np.array(xTest)

xTest2 = np.expand_dims(xTest2, -1)

yTrain2 = np.array(yTrain)

yTest2 = np.array(yTest)

X_train3 = xTrain2.reshape(dataset_size,-1)

else:
Y_train3 = yTrain2.reshape(dataset_size,-1) # 80/20 Train/Test Split
X_test3 = xTest2.reshape(test_size,-1) x_train, y_train, x_test, y test = splitData(.2)
Y_test3 = yTest2.reshape(test_size,-1) t0 = time.time()
return X_train3, Y_train3, X_test3, Y_test3 model.fit(x_train,y_train)

y_pred = model.predict(x_test)

proba = model.predict_proba(x_test)

roc_score = roc_auc_score(y_test, proba[:,1])

cv_score = cross_val_score(model,x_train,y_train,cv=10).mean()

a\/e_time_l =0 score = accuracy_score(y_test,y_pred)
& bin_clf_rep = classification_report(y_test,y_pred, zero_division=1)
ave_time 2 = 0 i % <on:
ave time 3 =08 accu_1 += score
I~ > ave_time_1 += time.time()-te
ave_t1me_4 =9 cvl += cv_score
elif x < 50:
accu__l T e accu_2 += score
accu 2 = 9 ave_time_2 += time.time()-te
e CV2 += cv_score
accu_3 =8 elif x < 75:
accu_3 += score
accu_4 =0 ave_time_3 += time.time()-te
cvl = 6 cv3 += cv_score
else:
cv2 = 0 accu_4 += score
= ave_time_4 += time.time()-te
cv3 =0 cv4 += cv_score
cvd = @ print("Trial {8} with accuracy of {1}\n".format(x+1, score))

Results for Testing Random Forest

50/50 Split

Ave Accuracy = ©.9956931359353969

Ave CV Score = ©.9948781062942138

Ave Time Taken = 10.885623331069947 seconds

Ave Accuracy = 0.9982169890664423
Ave CV Score = 0.9948219195279643
Ave Time Taken = 12.004673089981079 seconds

Ave Accuracy .997892376681614
Ave CV Score .9959807692307691
Ave Time Taken = 13.7992840385437082 seconds

non
n oo

Ave Accuracy = ©.9975126050420168
Ave CV Score = ©.9963454242456479
Ave Time Taken = 15.548892192840576 seconds

Highest average accuracy was 60/40 Train/Test split
o Accuracyof 99.821..%
Lowest average accuracy was 50/50 Train/Test split
o Accuracy of 99.569..%
Time went up with the greater the split towards
training
o Logically, this makes sense as the model has more to data
values to train on, the longer it will take

Visualizing a Decision Tree in a Random Forest Classifier

X[37627) <= 1657.0
gini=05
samples = 1114
value = [0, 821, 962]

from sklearn.tree import export_graphviz
from subprocess import call
from IPython.display import Image

Visualize a Random Forest

model = RandomForestClassifier(n_estimators=10)
x_train, y_train, x_test, y_test = splitData(.4)
Train

model.fit(x_train,y_train)

Extract single tree

estimator = model.estimators_[5]

Export as dot file

export_graphviz(estimator, out_file="tree.dot’',
rounded = True, proportion = False,
precision = 2, filled = True)

Convert to png using system command (requires Graphviz)
call(['dot’, "-Tpng', 'tree.dot', '-o', "tree.png', '-Gdpi=600'])

Display in jupyter notebook
Image(filename = 'tree.png’')

Trying More Neural Networks

1. Overview of what parameters and architectures | was using
2. Overview of code and results of a currently successful model

3. Need for more testing

Trying different Models Tried

e Alot of time was spent editing different parameters from last weeks neural network (ave 79% test
accuracy over 10 trials)

e Different parametersincluded:
o Epochs

Batch Size

Learning Rate

Optimizers

Activation Functions

Many Hidden Layers

Few Hidden Layers

Different Types of Layer

Batch Normalization

Dropout Rates

O O O O O O O O O

A Promising Result

478/478 [============s=c========c======] - 0s 656us/step

test loss, test acc: [0.0007525471131177635, 1.0]

478

Actual value = 1 | Prediction = ©.99980082648353577 | Precition Rounded = 1.8
478/478 [==============================] - B5 661us/step

test loss, test acc: [0.00100828247639661553, 1.0]

478

Actual value = 1 | Prediction = ©.9997267127637048 | Precition Rounded = 1.8
Actual value = @ | Prediction = 4.4352535041980445e-085 | Precition Rounded =

478/478 [==============================] - es 658US/Step
test loss, test acc: [©.8006307436167418364, 1.8]
478

Actual value = 1 | Prediction
Actual value = @ | Prediction
test loss, test acc: [0.8006265214261517853, 1.0]

478

Actual value = 1 | Prediction = 6.9998909235060061 | Precition Rounded = 1.0
a ol - - | 0 1 o s ¥ . ~ AN A NI AN AT SANA N 1 [o Youpunpey 3 SO [.
478/478 [==============================] - @5 662us/step

test loss, test acc: [0.0006233096327564472, 1.0]

478

Actual value = 1 | Prediction = ©.9998434782028198 | Precition Rounded = 1.

0.0

©.9997641444206238 | Precition Rounded = 1.8
©.0001633794599911198 | Precition Rounded = ©.@

e

-t

5 Trials of

e 70/30 Train/Test Split

o Everytrialhad a
different split
e Everytrail had atest
accuracy of 100%
e 20Epochs
e BatchSize of 32

The Model’s Architecture / Code

def models(): Model: "sequential_14"
model = Sequential()

Layer (type) Output Shape Param #
Input Layer
model.add(Conv2D(32, kernel_size = (3, 3), activation="relu', input_shape=(250, 256, 1))) conv2d_54 (Conv2D) (None, 248, 248, 32) 320
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization()) max_pooling2d_5@ (MaxPooling (None, 124, 124, 32) 2] ¢)
e Uses ‘blocks’ of Conv2D,
Hidden 1 batch_normalization_58 (Batc (None, 124, 124, 32) 128
model.add(Conv2D(64, kernel_size=(3,3), activation='relu')) 1
model.add(MaxPooling2D(pool_size=(2,2))) conv2d_55 (Conv2D) (None, 122, 122, 64) 18496 MaXPOO|Ing2 D’ and
model.add(BatchNormalization()) . .
max_pooling2d_51 (MaxPooling (None, 61, 61, 64) <] Batch Norma“zat'on
Hidden 2 :
model.add(Conv2D(64, kernel_size=(3,3), activation='relu')) batch_normalization_59 (Batc (None, 61, 61, 64) 256 ® Flna“y ﬂattens to a
model.add(MaxPooling2D(pool_size=(2,2))) i 756 (Coman w 0. % 63 T
model.add(BatchNormalization()) convia.c (Conv2D) (None, > o) dense |ayer
Hidden 3 max_pooling2d_52 (MaxPooling (None, 29, 29, 64) [}
model.add(Convzn(?6, ker'nel_s%ze=(3,3), activation="relu')) batch_normalization 60 (Batc (None, 20, 29, 64) 356 [Uses SGD Optlmlzer
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization()) conv2d_57 (Conv2D) (None, 27, 27, 96) 55392 P Evel’y |ayer but the ﬁnal
Hidden 4 max_pooling2d_53 (MaxPooling (None, 13, 13, 96) [}
model.add(Conv2D(32, kernel_size=(3,3), activation="relu')) |ayer uses relu
model.add(MaxPooling2D(pool_size=(2,2))) batch_normalization_61 (Batc (None, 13, 13, 96) 384
model.add(BatchNormalization()) F. | I . .d
model.add(Dropout(©.2)) conv2d_58 (Conv2D) (None, 11, 11, 32) 27680 L4 Ina ayer UseS SlngI
Hidden 5 max_pooling2d_54 (MaxPooling (None, 5, 5, 32) 2}
model.add(Flatten())
model.add(Dense(128, activation='relu')) batch_normalization_62 (Batc (None, 5, 5, 32) 128
Output Layer dropout_26 (Dropout) (None, 5, 5, 32) [}
model.add(Dense(1, activation = ‘sigmoid’))
flatten_14 (Flatten) (None, 800) 5]
Compile Model
sgd = SGD(1r = .81) dense_27 (Dense) (None, 128) 162528
model.compile(loss = 'binary_crossentropy’, optimizer = sgd, metrics = ['accuracy'])
model. summary () dense_28 (Dense) (None, 1) 129

return model
Total params: 242,625

Trainable params: 242,049
Non-trainable params: 576

Need to Further Test This Model

e Got first promising results for this model yesterday (6/24)
e Needto test:

o Different train/test split ratios
o More Epoch Sizes

m Originally tested 5 epochs, that had lower accuracy scores

m 20 Epochs was the text value tested, which yielded very good accuracy scores
o BatchSize

e Essentially, test this model more thoroughly like the Random Forest Classifier

Future Steps and
Goals

¥ (2

Also Google Colab has Corgi
Mode, it’s great =)

Test the new neural network model more
thorough and give results
What to do with PCA data / results?
Suffering from Black Box Testing when
construction Neural Networks

o Advice?
Ultimate Goal of Project Clarification

o Should the final model be a neural network, or
whatever ascertains a high classification
accuracy?

Any obvious next steps?

