Week 3 Progress Report

Presenter - Matt Behnke Mentor - Dr. Guo

Goals / Table of Contents

- 1. Migrating existing code to Google Colab
- 2. Approach 100% of files being included
- 3. Visualizing the data matrices
- 4. Cropping matrices based on melt pool
- 5. Increasing data instances of bad records
- 6. Constructing Initial Deep Learning Model

Setting up in Google Colab

Changing to Google Colab

- Very Minimal Differences which was easy!
- Shows access to GPU and its device properties
- Code for reading files in google colab differed from typical operating systems calls in python

```
incarnation: 17904489025945183401
physical_device_desc: "device: XLA_GPU device", name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 15701463552
locality {
    bus_id: 1
    links {
    }
}
```

```
from google.colab import drive
drive.mount('/content/drive')
path = "/content/drive/My Drive/Colab Notebooks/Porosity IndexData2.csv"
```

```
for file in glob.glob(path):
    titles = file.split('/content/drive/My Drive/Colab Notebooks/PorosityData/')
```

Google Colab Reconnect

Runtime disconnected

The connection to the runtime has timed out.

CLOSE RECONNECT

Google Colab would siconnect without regular interaction, which would cause to read files in again (which wasted *a lot* of time)

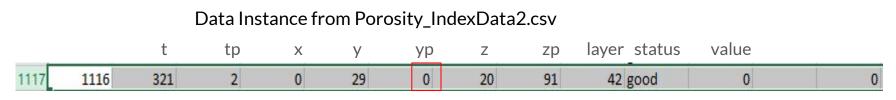
Found interesting work around code, to 'cheat' its system

```
> function ClickConnect(){
     document.querySelector("colab-connect-button").click()
     console.log("Clicked on connect button");
}
```

```
setInterval(ClickConnect, 60000)
```

Including Almost All Data Files

Original Files that were matched


- 1200 files were matched to their respective dataset by using data in Porosity_IndexData2.csv
 - Using t-time_x-location_y-location_z-location_layer#.csv formula provided in *Data in Brief*
- 6 Files are will not be included due to an invalid status of -1
 - Unable to tell whether it was supposed to be 0 or 1 so it was invalid
- 358 files not matched
 - Some files are not named accordingly with naming standards
 - A more encompassing formula/algorithm is needed to match them, which will be discussed next

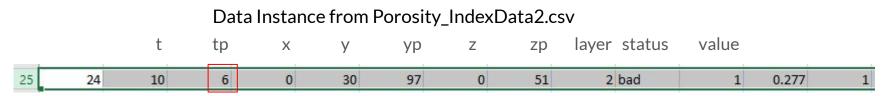
Number of files successfully encoded 1200 Number with invalid status (not 0 or 1) 6 Number of files without a corresponding title 358

Incorrect Titles Trends - Rounding

Occasionally, the Porosity_IndexData2.csv datafile would round tp, yp, or zp models

- Values > 05 went to 1
- Values =< 04 went to 0

Same File in File Directory


t321p2_x0_y29p04_z20p91_layer42.csv

Incorrect Titles Trends - Truncation

Occasionally, the Porosity_IndexData2.csv datafile would round tp, yp, or zp models

• All Values with a leading 0 and a following number, drops the leading zero

$$\circ \quad Ex: \quad 04 \rightarrow 4 \quad \text{or} \quad 07 \rightarrow 7$$

Same File in File Directory

t10p06_x0_y30p97_z0p51_layer2.csv

Incorrect Title Trends - Omitting zp

t0p1524_x0_y1p936_z0_layer1.csv	12/7/20
t0p3049_x0_y3p872_z0_layer1.csv	12/7/20
t0p4573_x0_y5p808_z0_layer1.csv	12/7/20
t0p6097_x0_y7p744_z0_layer1.csv	12/7/20
t0p7622_x0_y9p680_z0_layer1.csv	12/7/20
t0p9146_x0_y11p62_z0_layer1.csv	12/7/20
t1p067_x0_y13p55_z0_layer1.csv	12/7/20
t1p219_x0_y15p49_z0_layer1.csv	12/7/20
t1p372_x0_y17p42_z0_layer1.csv	12/7/20
t1p524_x0_y19p36_z0_layer1.csv	12/7/20
1p677_x0_y21p30_z0_layer1.csv	12/7/20
t1p829_x0_y23p23_z0_layer1.csv	12/7/20
1p982_x0_y25p17_z0_layer1.csv	12/7/20
12p134_x0_y27p10_z0_layer1.csv	12/7/20
t2p287_x0_y29p04_z0_layer1.csv	12/7/20
12p439_x0_y30p97_z0_layer1.csv	12/7/20
1.csv t2p591_x0_y32p91_z0_layer1.csv	12/7/20
t2p744_x0_y34p85_z0_layer1.csv	12/7/20
12p896_x0_y36p78_z0_layer1.csv	12/7/20
13p049_x0_y38p72_z0_layer1.csv	12/7/20
13p201_x0_y40p65_z0_layer1.csv	12/7/20
13p354_x0_y42p59_z0_layer1.csv	12/7/20

Algorithm to Include more files + Results

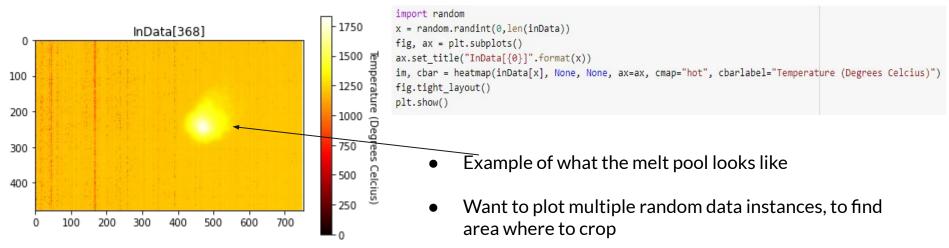
Algorithm

For every title from the original 358 files not having a matching dataset

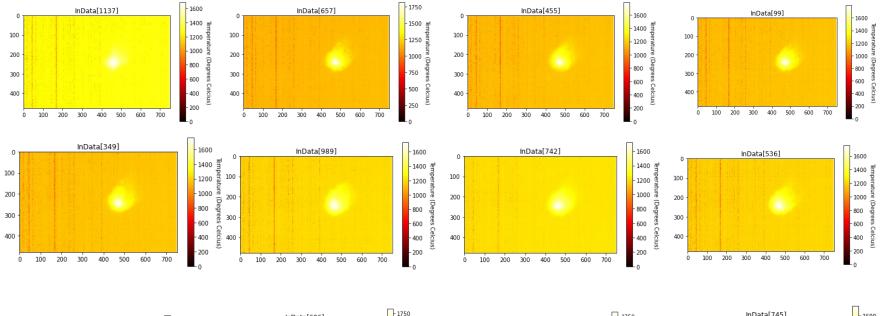
- 1. If 0 <= t <= 3, do not include a zp value and add to successful dataset
- 2. Else, split title by '_' into t#tp#, x#, y#yp#, z#zp#, layer#
 - a. For t#tp#, y#yp#, and z#zp#, round tp#, yp#, and zp#
 - b. Re-join title with a '_'
 - c. Hash Title in TitleStatusMap, if no error add to successful dataset
 - i. If error occurs, truncate tp#, yp#, and zp#
 - ii. Re-join title with a '_'
 - iii. Hash Title in TItleStatusMap, if no error add to successful dataset
 - iv. If error arises, note that file was unsuccessful

Results

Total titles fixed = 354 Here are the list of fixed titles t321p2_x0_y29p0_z20p91_layer42.csv


354 of 358 files were successfully included from the new algorithm

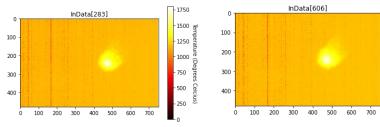
Here are the list of titles that were __NOT__ fixed t0p0000_0_0p0000_0_layer1.csv t9p908_x0_y29p04_z0p51_layer2.csv t28p05_x0_y42p59_z1p53_layer4.csv t32p77_x0_y0p0000_z2p04_layer5.csv

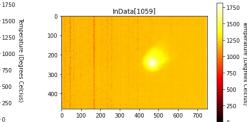

The remaining 4 were added manually, by changing values in Porosity_IndexData2.csv to match

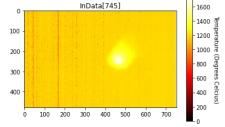
Visualizing Data Matrices

Generating a heatmap of a data matrix

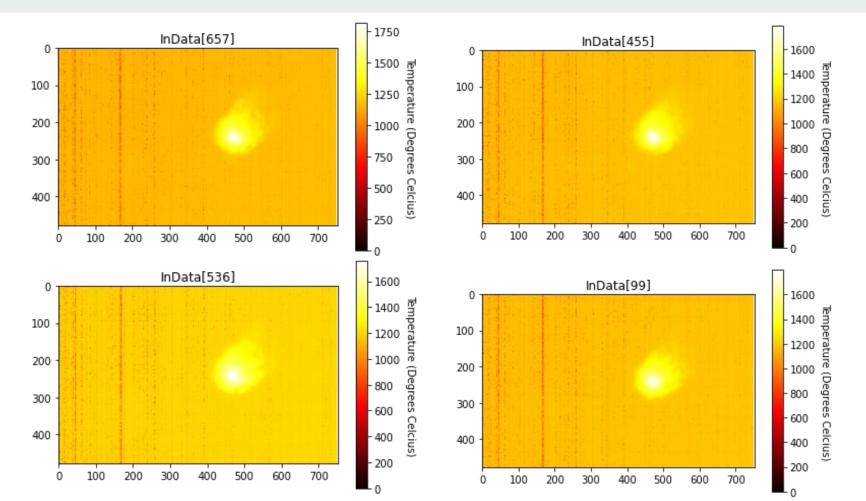
Visualizations of Random Instances of the Data Matrices

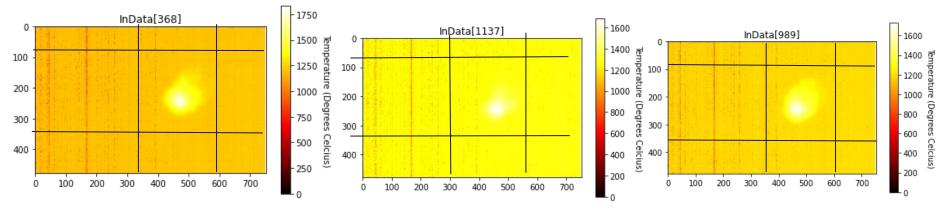

- 1250


1000

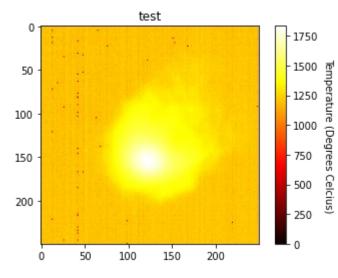

- 750

- 500


250



Visualizations of Random Instances of the Data Matrices


Cropping Matrices based on Melt Pool

Estimating an encompassing crop

- A region of 90 <= y <= 340 and 350 <= x <= 600 appears to encompass both smaller and larger melt pools
- Lowers total data points from 562,375,680 (480 x 752 x 1558) to 97,375,000 (250 x 250 x 1558)

Visualizing the New Crop Boundaries

<pre># Test to show visualizing the croppping test = inData[0][90:340, 350:600]</pre>	
<pre>print(test.shape)</pre>	
<pre>fig, ax = plt.subplots()</pre>	
ax.set_title("test")	
<pre>im, cbar = heatmap(test, None, None, ax=ax, cmap="hot", cbarlabel="Temperature</pre>	(Degrees Celcius)")
<pre>fig.tight_layout()</pre>	
plt.show()	

Increasing Data Instances of Defects

Increasing Instances of Bad Status

Methodology

While #ofBadInsatnces < #GoodInstances:

Pick Random number (in range of bad instances)

Find corresponding data and result

Add to cropInData and OutData

```
import random
# Create Bad Status List
badStatusList = []
goodStatusListLen = 0
for i in range(len(outData)):
    if(outData[i] == 1):
        badStatusList.append((cropInData[i], 1))
    else:
        goodStatusListLen += 1
```

tempBadStatusListLen = len(badStatusList)
print("Amount of Bad Instances = {0}".format(tempBadStatusListLen))
print("Amount of Good Instances = {0}".format(goodStatusListLen))

```
# Pick a random instance and add it to the crop data list
while tempBadStatusListLen < goodStatusListLen:
  randNum = random.randint(0,len(badStatusList)-1)
  tempInstance = badStatusList[randNum]
  cropInData.append(tempInstance[0])
  outData.append(tempInstance[1])
  tempBadStatusListLen += 1
```

print("Length of all data now {0}".format(len(cropInData)))

Amount of Bad Instances = 1154 Amount of Good Instances = 1154 Length of all data now 2308

Constructing Initial Deep Learning Model

Running out of RAM

Had to cut down on some of the training model input dimensions to not overload the RAM on Google Colab

Interesting work arounds on shape, which I believe cut down on accuracy

ResourceExhaustedError Traceback (most recent call last)
<ipython-input-49-bfea58214237> in <module>()
11 return model
12
---> 13 model = initalizeModel()
______ 12 frames ______

/usr/local/lib/python3.6/dist-packages/six.py in raise_from(value, from_value)

ResourceExhaustedError: 00M when allocating tensor with shape[100937500,100] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [0p:RandomUniform]

SEARCH STACK OVERF	LOV
--------------------	-----

Initial Test Model

Show Google Colab Notebook

Future Steps / Feedback or Reconsiderations

- Appears like (hopefully) most of the pre-processing of data is done, so it's time to get more detailed and intricate with model architecture
- More clever ways to crop than based off visuals
- Office of Advanced Research Computing (ORAC)?
 - I have not heard back =(