
Week 2 Progress Report

Presenter - Matt Behnke
Mentor - Dr. Guo

Tools that I started with

● Python 3 & Jupyter Notebook

● Tensorflow + Keras

● Pandas

● Sklearn

Reading in Data using Porosity_IndexData2.csv
● Used Porosity_IndexData2.csv to map the Status (1 = bad, 0 = good) to the files in the porosity

datasets

● First converted to csv file (primarily for my ease of use)

● Added Desc, Status, & Status2 so each attribute is labeled

● However, ultimately disregarded Desc, size(mm) & Status2
○ Status2 was the same as status, so I chose to disregard it as it was redundant
○ Desc is just a nominal description of status, which is good for readability of new users, but not integral for a

CNN
○ size(mm) seemed to be an extra qualifier for bad statuses, since it did not applied to good I did not include it

because then good models would be training with a NaN data

Reading in Data using Porosity_IndexData2.csv
(Cont.)
● Creating a mapping from a porosity dataset’s filename to it’s status

● This title name will later be replaced by the porosity dataset’s corresponding data

Reading in 300W-30ipm-4rpm_CSV_Pyro -
converted

1. Iterate through every file in the directory and record filename

2. Using the filename, try in index the map and get its corresponding status
a. If the index does not exist, raise a error, that instead adds to a list containing files that did not correspond to

the earlier function creating filenames

3. If the filename exists in the map, check if it’s status is either 1 or 0
a. If the status is either 1 or 0

i. Add to inData and OutData (the data to use for training and predictions)
b. Otherwise

i. Note that the file has an ‘invalid’ status, ignore it, but print which file it was with its value to the
console

Standardizing Data using SKLearn

● Puts data within a minimum and maximum size
○ Typically between 1 and 0

● Just so that data is scaled to unit size

● Helps normally distribute the data

● I used this is a prior Neural Network project, so I thought I would apply it again

Splitting Test & Train Data

● Typically just splitting data so a model does not become overfitted to its own dataset
○ Using it’s own data not trained on so it has data it can trial on and determine accuracy
○ Train (80%), Test (10%), Valid (10%)

■ Not much significance, just arbitrary values that can be further tuned later

● Then I started running into problems =’(

Splitting Test & Train Data (Cont.)

● 940 Instances of matrices of 479 Rows x 753 Columns
○ Hence, 1 Instance has 360,687 data points (yikes)
○ So the dataset in whole has 339,045,780 data points (yikes.. again)

● This caused my laptop to not be too happy...

Building Model (After some successful loads)

● Very generic model, just to try and get the data to

begin to train

● Occasionally ran, but had same errors (performance)

when trying to train

Moving Forward / Questions (That I have for
you and you have for me =))
● Using google colab

○ Cloud Based, which could help fight some of the performance/data issues I have with my laptop
○ Also has jupyter notebook formatting, so it won’t be too much a re-work (I hope)

● Trying to be more clever/creative with how I am attempting to train the data

● Goals next week (tentative)
○ Have model training and tested with different types of models for comparison
○ Involves figuring out performance problems (proving to be a big hurdle)
○ Getting files that were excluded on naming parameters back into dataset

● Any campus machines to putty into (I have other friends at university they have done this with, for

fast training)

● Any other suggestions for moving forward to training a model with such data

