Machine Learning for Quality Prediction in Additive Manufacturing

Presentor: Matt Behnke Mentor:

Introduction to Laser Based Additive Manufacturing (LBAM)

What is LBAM?

- Products are made when metallic powder is melted layer-by-layer by a laser until the product is complete
- A much more cost effective option over subtractive engineering

Applications of LBAM

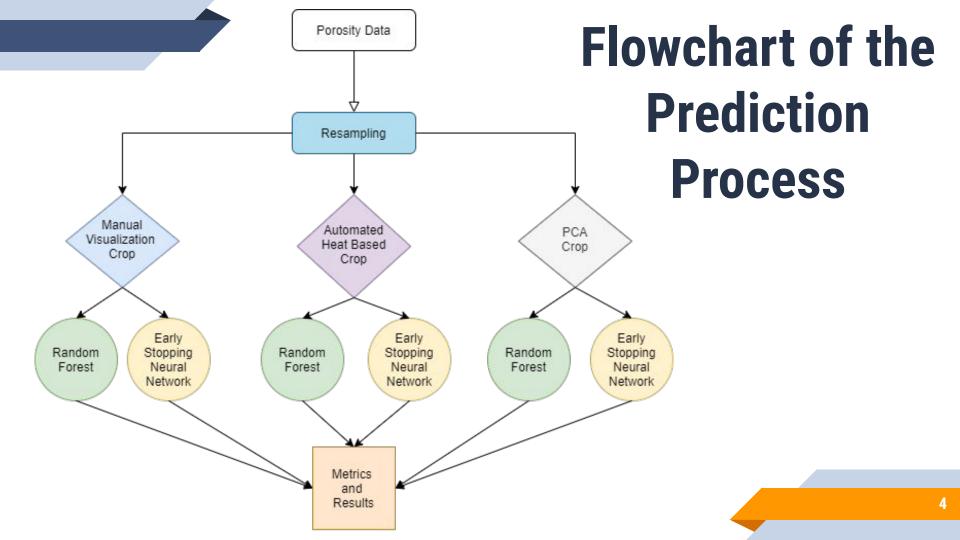
- Can produce many different types of complicated parts or models
- Benefiting industries like
 - Aerospace
 - Bioengineering / Medical
 - Consumer Products

Problems is LBAM

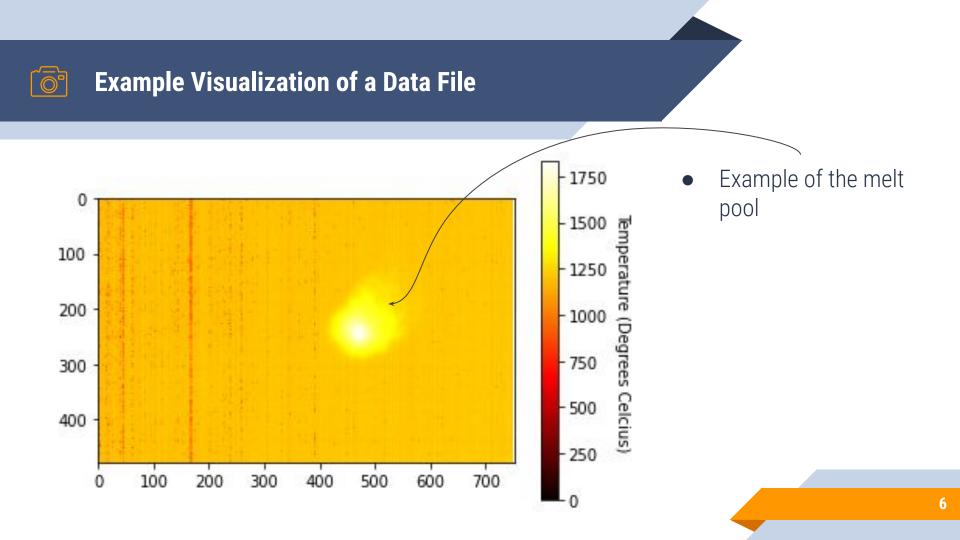
- Defects due to Porosity
 - Prevented adoption on a large scale
- No reliable / cost-efficient way of detecting these porosity defects
 - No in-situ detection
 - Post-production
 detection is expensive

- Propose a consistent, accurate, and reliable way for *in-situ* for monitoring for porosity prediction in the LBAM Process
- Provide insight on which layers are more likely to produce porosity defects

- Provide methods to automatically detect melt pool in LBAM
 - Melt Pool is a signature trait of LBAM



- Data was collected from OPTOMEC LENS™750 LBAM system
- Data is described in *Data indicating temperature response of Ti–6AI–4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping* by Garrett J. Marshall, Scott M. Thompson, Nima Shamsaeia
- In total the data set consisted of 1556 csv files
 - Each data file is represented by a data matrix (479 Rows x 753 Columns)
 - Each data point in the matrix is a temperature value (°C) ranging from 0-1800
 - Each file is mapped to either a '0' or a '1' which represents a quality of good and bad respectively

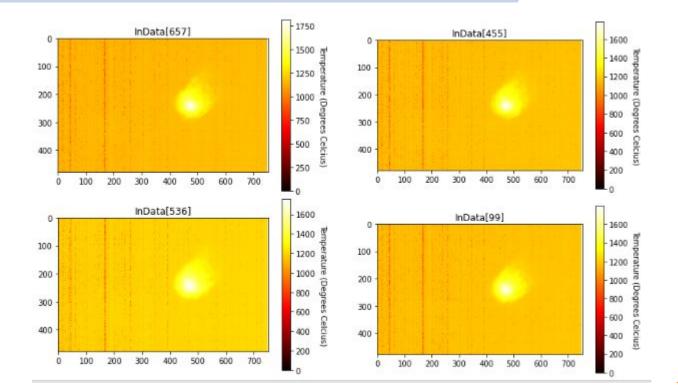


Resampling the Data

- The data set was heavily unbalanced
 - o 1486 'Good' or '0' data files
 - o 70 'Bad' or '1' data files
- This would be hard to train a model off of due ot the limited amount of 'bad' instances
- Bootstrap Resampling was used to increase the number of bad instances to 1486, which equaled the amount of good instances
- The final dataset that was used now contained 2972 data files, with an even split of 'good' and 'bad' instances

- Reduce redundant information
 - Many data images had the same areas that had the exact same pattern, which ultimately won't contribute to a successful model
- Speed up Model Performance
 - Less data points means the model has less training, which results in faster speeds

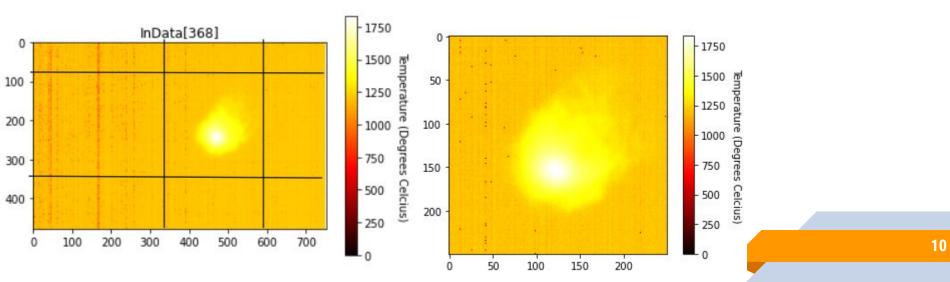
Example of Redundant Information



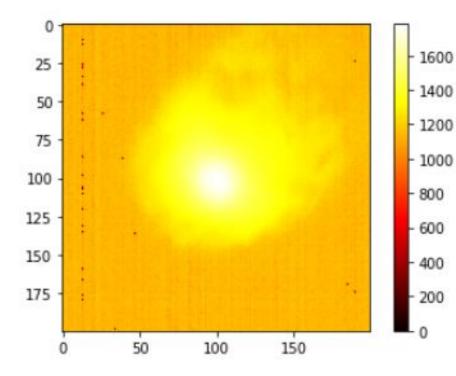
9

Visualization Based Crop

• By visualizing many random instances of data, a good manual based crop was determined to be $x \in [350,600]$, $y \in [90, 340]$, creating a new 250x250 matrix



Automated Heat Based Crop



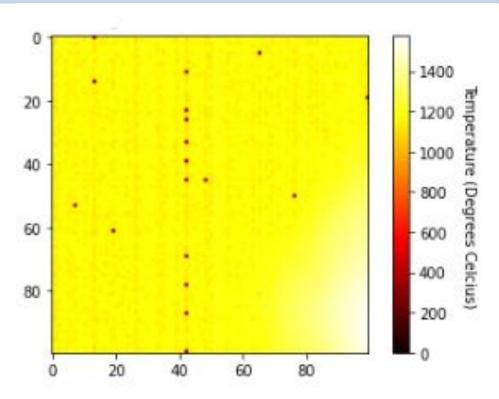
- Find hottest pixel from a linear search
 - If there is a tie, the average of their x & y coordinates are used
- Create a 200x200 box, around the hottest pixel found
- Benefit is it automatically finds the melt pool, regardless of the positioning

Icius

11

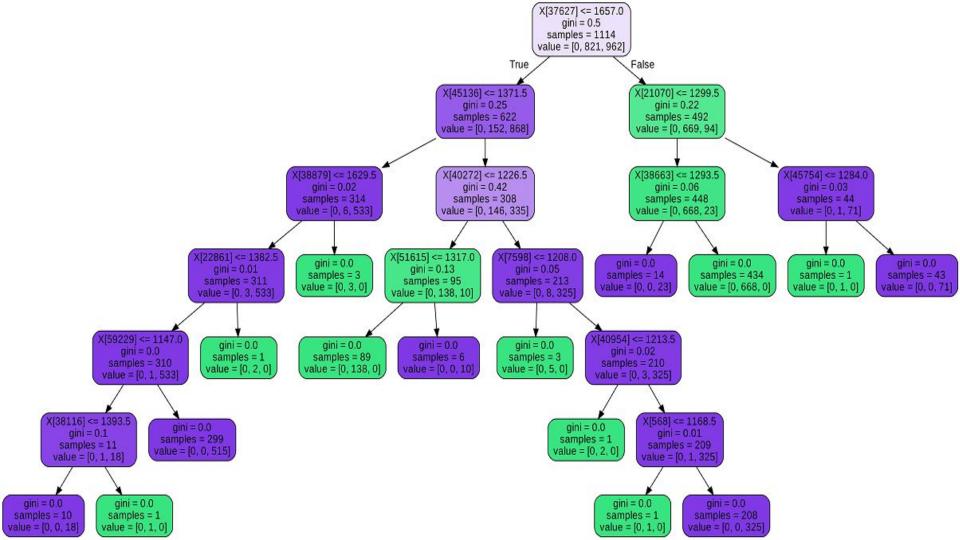
- PCA is a method to reduce the number of features in a dataset by extracting the most important features
 - These features being pixels
- Important to pick a number of components that yields a high level of variance, 40 components
 - \circ 95% variance was chosen to be sufficient
- Each component has a list of the magnitude of each feature's (each pixel's) eigenvalue
 - The higher the magnitude the more 'importance'
- The mode for the x, y coordinates of these pixels were taken to be the center of the crop

 If there was no mode

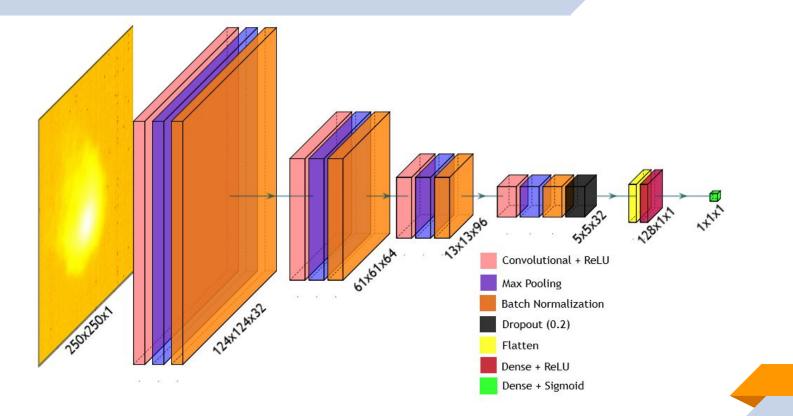


100x100 Grid
From the dataset PCA determined that the x ∈
[300,400], y ∈ [148, 248] would be the new bounds with (350, 198) as the center

- Random Forest tends to be a good model in computer vision classifying tasks
 - Ex: Random Forest was used to classify human body part poses on the kinect for the xbox 360
- Data is vectorized before using the Random Forest Model
- Random Forest is built from an ensemble of decision trees
 - In our model, 10
- Using sklearn package



Early Stopping Neural Network



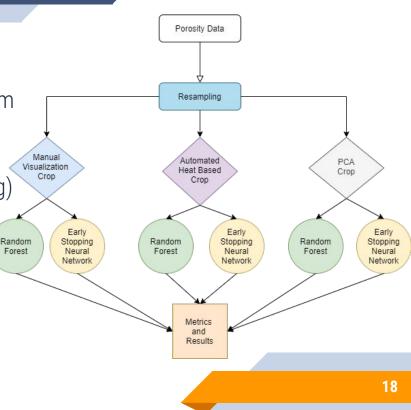
16

ငို Early Stopping Neural Network (cont.)

- Throughout Training Validation Accuracy was highly related to the test accuracy on a random split
- If the validation accuracy was low on the last epoch of training the test accuracy scored at a similar level and vice-versa
- Wanted a way to ensure training stops on an epoch with a high, which was accomplish with an Early Stopping Callback Function
- The Number of Epochs were increased, to 50, and a Patience value was set
 - Patience refers to the number of epochs the model will train without an improved score in a specified metric, Validation Accuracy
 - If the patience value is reached, the model will revert back to the epoch with the highest score in the specified metric

Procedure for Obtaining Metrics

- For each cropping style (Manual, Heat-Based, PCA)
 - The cropped data was tested for both the Random Forest and Early Stopping Neural Network
 - Each set of 25 trials were don over a certain training / testing ratios (ex: 10/90 training/testing)
 - o 25 trials per testing
 - Each trial had a random split
 - Testing accuracy and Time was recorded
 - Metrics were recorded as the average of the 25 trials



Results for every Cropping Style

Manual Crop

Training /Testing Split Ratio	Test Accuracy (%)		Time (sec)	
	Random Forest	Early Stopping Neural Network	Random Forest	Early Stopping Neural Network
10/90	98.45	59.83	2.49	12.02
20/80	99.26	94.66	4.30	31.58
30/70	99.67	98.19	6.18	37.02
40/60	99.68	99.18	7.82	43.39
50/50	99.57	99.00	9.56	50.98
60/40	99.82	99.69	11.37	60.78
70/30	99.79	99.50	13.07	72.20
80/20	99.75	99.90	14.66	75.84

Heat-Based

Training /Testing Split Ratio	Test Accuracy (%)		Time (sec)	
	Random Forest	Early Stopping Neural Network	Random Forest	Early Stopping Neural Network
10/90	96.48	66.23	2.20	10.12
20/80	99.14	98.56	3.95	21.89
30/70	99.58	98.08	5.71	29.14
40/60	99.84	99.01	12.17	31.69
50/50	99.46	96.29	10.09	15.21
60/40	99.64	99.49	12.00	22.18
70/30	99.78	99.72	13.80	24.05
80/20	99.90	99.53	15.55	25.63

PCA

Training /Testing Split Ratio	Test Accuracy (%)		Time (sec)	
	Random Forest	Early Stopping Neural Network	Random Forest	Early Stopping Neural Network
10/90	95.46	49.63	0.80	4.13
20/80	97.88	62.00	1.57	6.86
30/70	98.80	93.64	2.25	11.98
40/60	99.04	99.43	2.95	23.99
50/50	99.46	98.25	3.53	34.46
60/40	99.64	99.70	4.19	43.71
70/30	99.78	99.81	4.75	48.02
80/20	99.91	99.13	5.46	47.79

Over 25 trials with the Early Stopping Neural Network at the random 50/50 split

- 75 different files out of the original 1556 were misidentified
- '0' status refers to a positive, while 1 refers to 'negative', so when they are incorrectly identified as so it refers to 'false positive' and 'false negative'
 - o 42 False Positives
 - 33 False Negatives
- By counting files more than once (predicted incorrectly over multiple trials)
 - o 79 False Positives
 - 539 False Negatives
- 38 different layers were misidentified
 - Out of the 75 different files, Layer 1,2 & 3 constituted of 29/75
 - 12 Layer-2 Files were misidentified
 - 10 Layer 1 files were misidentified
 - 7 Layer-3 files were misidentified
 - All other files had 2 or less instances

- Models provided very consistent and accurate results that could be used for in-situ monitoring during the LBAM process
- Models performed well over different types of cropping methods, showing their adaptability
 - Preferring Heat-Based crop
- Future work could include trying to find out where in the image the model predicts is causing porosity defects

- Huge Thanks to Dr. (Grace) Guo for her mentorship throughout the summer
- Thank you to NSF grant CCF-1852215 and the Rutgers DIMACS Team for the opportunity to work on the project

References

- Marshall, Garrett & Thompson, Scott & Shamsaei, Nima. (2016). Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping. Data in Brief. 7. 10.1016/j.dib.2016.02.084.
- Khanzadeh, Mojtaba & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Tschopp, Mark & Bian, Linkan. (2018). Porosity prediction: Supervised-learning of thermal history for direct laser deposition. Journal of Manufacturing Systems. 47. 69-82. 10.1016/j.jmsy.2018.04.001.
- 3. Guo, Weihong & Tian, Qi & Guo, Shenghan & Guo, Yuebin. (2020). A physics-driven deep learning model for process-porosity causal relationship and porosity prediction with interpretability in laser metal deposition. CIRP Annals. 10.1016/j.cirp.2020.04.049.
- 4. Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. In Proc. BMVC., 2014.
- 5. He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406.4729v2, 2014.
- 6. Wu, Ren, Yan, Shengen, Shan, Yi, Dang, Qingqing, and Sun, Gang. Deep image: Scaling up image recognition, 2015.
- 7. Seifi, S.H., W. Tian, H. Doude, M.A. Tschopp, and L. Bian, Layer-wise modeling and anomaly detection for laser-based additive manufacturing. Journal of Manufacturing Science and Engineering, 2019.
- 8. Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In Proc. CVPR, 2014.