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Introduction to Laser Based Additive Manufacturing 
(LBAM)

What is LBAM?

▰ Products are made 
when metallic powder is 
melted layer-by-layer by 
a laser until the product 
is complete

▰ A much more cost 
effective option over 
subtractive engineering  

Applications of LBAM

▰ Can produce many 
different types of 
complicated parts or 
models

▰ Benefiting industries like
▻ Aerospace
▻ Bioengineering / 

Medical
▻ Consumer Products

Problems is LBAM

▰ Defects due to Porosity
▻ Prevented adoption on a 

large scale
▰ No reliable / cost-efficient 

way of detecting these 
porosity defects
▻ No in-situ detection
▻ Post-production 

detection is expensive
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Purpose / Contribution of this Study
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● Propose a consistent, accurate, and reliable way for in-situ for monitoring for 
porosity prediction in the LBAM Process

● Provide insight on which layers are more likely to produce porosity defects

● Provide methods to automatically detect melt pool in LBAM

○ Melt Pool is a signature trait of LBAM



Flowchart of the 
Prediction 
Process
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Porosity Data Set
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● Data was collected from OPTOMEC LENS™750 LBAM system

● Data is described in Data indicating temperature response of Ti–6Al–4V thin-walled structure 
during its additive manufacture via Laser Engineered Net Shaping by Garrett J. Marshall, Scott M. 
Thompson, Nima Shamsaeia

● In total the data set consisted of 1556 csv files
○ Each data file is represented by a data matrix (479 Rows x 753 Columns)
○ Each data point in the matrix is a temperature value (°C) ranging from 0-1800
○ Each file is mapped to either a ‘0’ or a ‘1’ which represents a quality of good                      

and bad respectively 



Example Visualization of a Data File
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● Example of the melt 
pool



Resampling the Data
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● The data set was heavily unbalanced
○ 1486 ‘Good’ or ‘0’ data files
○ 70 ‘Bad’ or ‘1’ data files

● This would be hard to train a model off of due ot the limited amount of 
‘bad’ instances 

● Bootstrap Resampling was used to increase the number of bad 
instances to 1486, which equaled the amount of good instances 

● The final dataset that was used now contained 2972 data files, with an 
even split of ‘good’ and ‘bad’ instances



Why Crop the Datafiles?
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● Reduce redundant information
○ Many data images had the same areas that had the exact 

same pattern, which ultimately won’t contribute to a 
successful model

● Speed up Model Performance
○ Less data points means the model has less training, which 

results in faster speeds



Example of Redundant Information
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Visualization Based Crop
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● By visualizing many random instances of data, a good manual based crop was 
determined to be  x ∈ [350,600],  y ∈ [90, 340], creating a new 250x250 matrix



Automated Heat Based Crop
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● Find hottest pixel from a linear 
search
○ If there is a tie, the 

average of their x & y 
coordinates are used

● Create a 200x200 box, around 
the hottest pixel found

● Benefit is it automatically finds 
the melt pool, regardless of the 
positioning  



Principal Component Analysis (PCA) Crop
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● PCA is a method to reduce the number of features in a dataset by extracting the most 
important features 
○ These features being pixels

● Important to pick a number of components that yields a high level of variance, 40 
components 
○ 95% variance was chosen to be sufficient

● Each component has a list of the magnitude of each feature’s (each pixel’s) eigenvalue
○ The higher the magnitude the more ‘importance’

● The mode for the x, y coordinates of these pixels were taken to be the center of the crop
○ If there was no mode



PCA Crop (cont.)
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● 100x100 Grid
● From the dataset PCA 

determined that the x ∈ 
[300,400],  y ∈ [148, 248] would 
be the new bounds with (350, 
198) as the center   



Random Forest Model
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● Random Forest tends to be a good model in computer vision 
classifying tasks
○ Ex: Random Forest was used to classify human body 

part poses on the kinect for the xbox 360
● Data is vectorized before using the Random Forest Model
● Random Forest is built from an ensemble of decision trees

○ In our model, 10
● Using sklearn package  
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Early Stopping Neural Network 
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Early Stopping Neural Network (cont.) 
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● Throughout Training Validation Accuracy was highly related to the test accuracy on 
a random split

● If the validation accuracy was low on the last epoch of training the test accuracy 
scored at a similar level and vice-versa

● Wanted a way to ensure training stops on an epoch with a high, which was 
accomplish with an Early Stopping Callback Function

●  The Number of Epochs were increased, to 50, and a Patience value was set
○ Patience refers to the number of epochs the model will train without an 

improved score in a specified metric, Validation Accuracy 
○ If the patience value is reached, the model will revert back to the epoch with 

the highest score in the specified metric 



Procedure for Obtaining Metrics
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● For each cropping style (Manual, Heat-Based, PCA)
○ The cropped data was tested for both the Random 

Forest and Early Stopping Neural Network
○ Each set of 25 trials were don over a certain 

training / testing ratios (ex: 10/90 training/testing)
○ 25 trials per testing

■ Each trial had a random split
■ Testing accuracy and Time was recorded 

○ Metrics were recorded as the average of the 25 
trials 



Results for every Cropping Style

Manual Crop Heat-Based

PCA
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Misclassified Data 
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Over 25 trials with the Early Stopping Neural Network at the random 50/50 split
● 75  different files out of the original 1556 were misidentified
● ‘0’ status refers to a positive, while 1 refers to ‘negative’, so when they are incorrectly identified 

as so it refers to ‘false positive’ and ‘false negative’
○ 42 False Positives
○ 33 False Negatives

● By counting files more than once (predicted incorrectly over multiple trials)
○ 79 False Positives
○ 539 False Negatives 

● 38 different layers were misidentified
○ Out of the 75 different files, Layer 1,2 & 3 constituted of 29/75

■ 12 Layer-2 Files were misidentified
■ 10 Layer 1 files were misidentified
■ 7 Layer-3 files were misidentified
■ All other files had 2 or less instances   



Conclusion
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● Models provided very consistent and accurate results that could be 
used for in-situ monitoring during the LBAM process

● Models performed well over different types of cropping methods, 
showing their adaptability
○ Preferring Heat-Based crop

● Future work could include trying to find out where in the image the 
model predicts is causing porosity defects
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