Ramsey Numbers of 0-1 Matrices

Matěj Konečný, Jana Novotná, Jakub Pekárek, Václav Václavovič Rozhoň, J. K. Svoboda, Štěpán Šimsa and Jarda Hančl

Charles University

5 Jun 2017
Ramsey’s theorem

Ramsey, 1928

“Give large enough graph, it will contain a relatively large subgraph that is either a clique or an independent set.”
Ramsey’s theorem

Ramsey, 1928

“Give large enough graph, it will contain a relatively large subgraph that is either a clique or an independent set.”
Ramsey’s theorem

Ramsey, 1928

“Give large enough graph, it will contain a relatively large subgraph that is either a clique or an independent set.”
0-1 matrices

\[
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}
\]
Identity matrix

\[
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}
\]
Permutation matrix

\[
\begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{pmatrix}
\]
Matrix of ones.

\[
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}
\]
L matrix.
What is a submatrix?

\[
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\]

is a submatrix of

\[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]
What is a submatrix?

\[
\begin{pmatrix}
1 \\
1 & 1
\end{pmatrix}
\]

is a submatrix of

\[
\begin{pmatrix}
& & & \\
\downarrow & \downarrow & \downarrow & \\
\rightarrow 1 & 1 \\
\rightarrow 1 & 1 \\
\rightarrow 1 & 1
\end{pmatrix}
\]
Problem

Question

Given a $k \times k$ matrix A, what is the smallest number $N = R(A)$ such that for any coloring of cells of a $N \times N$ table C with two colors there always is a subtable $B \subseteq C$ of size $k \times k$, such that all positions (x, y) in B with $A_{x,y} = 1$ have the same colour.
Example

For $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
Example

For $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ we can take $N = 3$.
Example

For $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ we can take $N = 3$.
Example

For \(A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) we can take \(N = 3 \).
What is known

For the identity matrix I_k we have $R(I_k) = 2^k - 1$ (pigeonhole on diagonal).

For the all-ones matrix O_k we have $R(O_k) \approx 2^k$.

For any permutation matrix P_k it is true that $R(P_k) \leq k^2$.

There are permutation matrices P'_k such that $R(P'_k) \geq k^2 \log_2 k$.
What is known

- For the identity matrix I_k we have $R(I_k) = 2k - 1$ (pigeonhole on diagonal).
What is known

- For the identity matrix I_k we have $R(I_k) = 2k - 1$ (pigeonhole on diagonal).
- For the all-ones matrix O_k we have $R(O_k) \approx 2^k$.
What is known

- For the identity matrix I_k we have $R(I_k) = 2k - 1$ (pigeonhole on diagonal).
- For the all-ones matrix O_k we have $R(O_k) \approx 2^k$.
- For any permutation matrix P_k it is true that $R(P_k) \leq k^2$.

What is known

- For the identity matrix I_k we have $R(I_k) = 2k - 1$ (pigeonhole on diagonal).
- For the all-ones matrix O_k we have $R(O_k) \approx 2^k$.
- For any permutation matrix P_k it is true that $R(P_k) \leq k^2$.
- There are permutation matrices P'_k such that $R(P'_k) \geq \frac{k^2}{\log^2 k}$.
Our goals

Get better estimates for some more restricted classes of permutation matrices.
Get estimates for some other classes.
Investigate the boundary between $\mathbb{R}(M)$ being polynomial and super-polynomial.
Our goals

- Get better estimates for some more restricted classes of permutation matrices.
- Get estimates for some other classes.
- Investigate the boundary between $R(M)$ being polynomial and super-polynomial.
Our goals

- Get better estimates for some more restricted classes of permutation matrices.
- Get estimates for some other classes.
Our goals

- Get better estimates for some more restricted classes of permutation matrices.
- Get estimates for some other classes.
- Investigate the boundary between $R(M)$ being polynomial and super-polynomial.
Acknowledgements

We would like to thank DIMACS for organizing the REU program and to DIMATIA, Department of Applied Mathematics and Computer Science Institute of Charles University for making it possible for us to attend the program.