Creating and Classifying an Alternate Hierarchy

Student: Marina Knittel Advisor: Professor Eric Allender

Harvey Mudd College

Thursday, July 13th, 2017

Harvey Mudd College

Deterministic Polynomial Time

Definition

A language L is in **P** if for any $x \in L$, there is a polynomial time machine M such that M(x) = 1.

Nondeterministic Polynomial Time

Definition

A language *L* is in **NP** if for any $x \in L$, there is a polynomial time machine *M* such that $\exists a M(x, a) = 1$.

Nondeterministic Polynomial Time (Complement)

Definition

A language *L* is in **coNP** if for any $x \in L$, there is a polynomial time machine *M* such that $\forall a M(x, a) = 1$.

Note, the complement of an NP problem is:

$$eg \exists a M_1(x, a) = 1,$$

 $\forall a M_1(x, a) = 0,$
 $\forall a M_2(x, a) = 1.$

Polynomial Hierarchy

≣ ୬९९ Harvey Mudd College

Polynomial Hierarchy

Defining a New Logspace Hierarchy

Polynomial machine vs our machine

Harvey Mudd College

Defining a New Logspace Hierarchy

Harvey Mudd College

The Pathwidth Problem

Creating and Classifying an Alternate Hierarchy

Harvey Mudd College

$\hat{\Sigma}_1^{\textit{L}}$ Complete Problem

Proof of completeness

- ► Containment: clearly, *M* can solve bounded pathwidth *SAT*
- Hardness: apply Cook-Levin Theorem to represent M as boolean expression, each step uses only logspace, so the expression is a bounded pathwidth SAT problem

- This works for other levels of the hierarchy
 - ie, ∀a₁∃a₂ SAT with logarithmically bounded pathwidth is complete for Π^L₂

Comparisons with the Polynomial Hierarchy

< ∃ >

Combined Hierarchy

Creating and Classifying an Alternate Hierarchy

æ Harvey Mudd College

э

・ロ・ ・ 日・ ・ 日・

Conclusion

- We've created a new machine that creates a heirarchy that probably doesn't collapse
 - Else the polynomial hierarchy would collapse!
- We know a characterization for the complete problems for the entire hierarchy
- We know how it fits with the polynomial hierarchy
- But it isn't helpful to the Group Isomorphism problem (see: Czechs students' presentation)
- We hope to find more natural complete problems in the hierarchy

Acknowledgments

Thanks to Professor Eric Allender and Professor Periklis Papakonstantinou for providing texts and guidance for both research and this presentation. I would also like to acknowledge the Czech students with whom I worked on this problem.

Work supported by NSF grant CCF-1559855.

Bibliography

- Sanjeev Arora and Boaz Barak: *Computational Complexity: A Modern Approach*. Cambridge University Press, 2007.
- Michael Garey and David Johnson: Computers and Interactability: A Guide to the Theory of NP-Completeness.
 WH Freemanx, 1979.