Using Kolmogorov Random Strings to Understand Complexity Class Relations

Student: Marina Knittel Advisor: Professor Eric Allender

Harvey Mudd College

Monday, June 2nd, 2017

Using Kolmogorov Random Strings to Understand Complexity Class Relations

A Brief Introduction to Reductions

- Reduction: an algorithm to solve a problem given the solution to another problem
- ► A reduces to B (A ≤ B): there exists an efficient reduction from A to B
 - B can be used to solve A
 - B is at least as hard as A

Kolmogorov Complexity

Kolmogorov Complexity [K(x)]: The length of the shortest program that prints its input, x

- 10101011 can be written as (10)³11
- Kolmogorov random strings: $R_K = \{x \mid K(x) \ge |x|\}$
 - "Simplest" form strings
 - Not random: $10101011 = (10)^3 11$
 - Probably random: 28384329
- Notable reductions
 - $PSPACE \subseteq P^{R_{K}}$

•
$$BPP \subseteq P_{tt}^{R_{\mu}}$$

Promise Problems

- Given: A set of inputs L, and two sets Y, N ⊆ L such that Y ∩ N = Ø
- ▶ Goal: Accept everything in Y, reject everything in N, don't care on all other inputs
- Modification of R_K
 - L is the set of all possible input strings

•
$$Y = \{x \mid K(x) \ge |x|\}$$

- $N = \{x \mid K(x) < g(|x|)\}$ where $g(|x|) \le |x|$
- Don't care about x such that $g(|x|) \leq K(x) < |x|$

My REU Project

- Explore the R_K promise problem and other complexity classes (specifically BPP)
- Don't know much about efficient reductions from BPP to R_K
- ► Anything reducible to the *R*_K promise problem is reducible to *R*_K

Acknowledgments

Thanks to Professor Eric Allender for providing texts and providing guidance for both research and this presentation.

Work supported by NSF grant CCF-1559855.

Bibliography

- Buhrman, Harry, Lance Fortnow, Michal Koucky, and Bruno Loff. "Derandomizing from Random Strings." 2010 IEEE 25th Annual Conference on Computational Complexity (2010): Web.
- Allender, Eric. "Complexity of Complexity". 14 Nov. 2016. Web.
- Koucky, Michal. "A Brief Introduction to Kolmogorov Complexity." (2006): Web.
- Allender, Eric, Michael C. Loui, and Kenneth W. Regan, "Other Complexity Classes and Measures." *Algorithms and Theory of Computation Handbook.* 2nd ed, N.p.: Chapman & Hall/CRC, n.d. 24-1-24-27. Web.