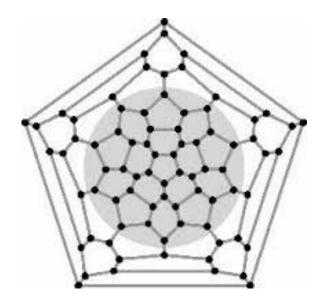


Center for Discrete Mathematics & Theoretical Computer Science Founded as a National Science Foundation Science and Technology Center

Bilu-Linial Conjecture and Ramanujan Graphs


Marielle Jurist Mentor: Ameera Chowdhury

Expanders and Applications

Expander graph = sparse but well connected

Applications in Computer science

- Generate expanders with same properties as large graphs like FB
- Can build infinite families of expander graphs using Ramanujan 2-lift

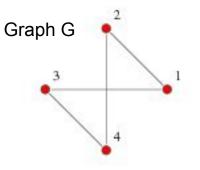
The Conjecture:

The Bilu-Linial conjecture claims every d-regular graph has a

2-lift such that all new eigenvalues are in the range

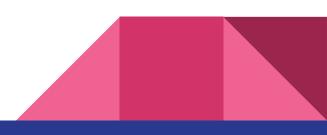
 $[-2 \sqrt{d-1}, 2 \sqrt{d-1}]$

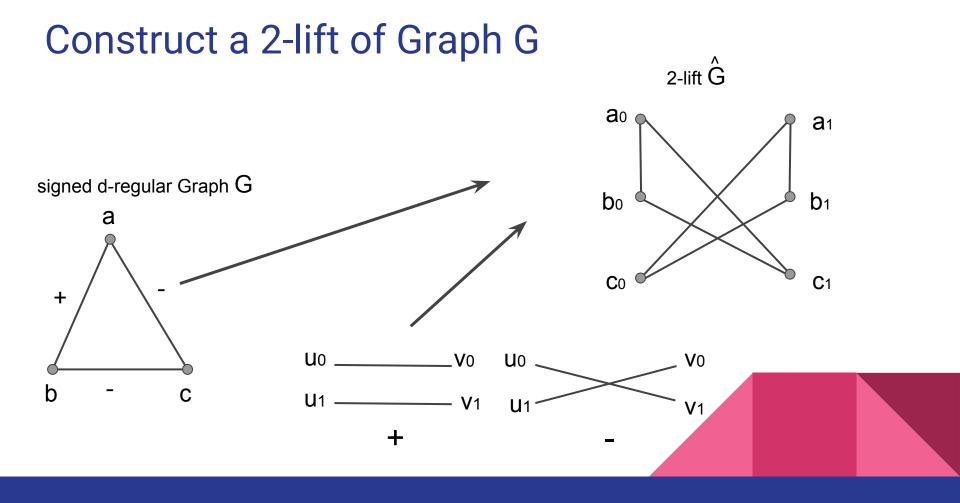
 \rightarrow if this works can make Expander graphs



Background

What is a graph? an ordered pair G = (V, E) comprising a set V of vertices together with a set E of edges


From Adjacency Matrix of Graph G we can find Eigenvalues of G


This problem works with d-regular graphs d-regular = all vertices have the same degree

Adjacency Matrix of G

$(^{0})$	1	1	0)
1	0	0	1
1	0	0	1
0)	1	1	0)

Eigenvalues of \hat{G} = Eigenvalues of G U Eigenvalues of A_s

```
a0
b0
c0
a1
b1
c1

a0
0
1
1
0
0
1

b0
1
0
0
0
0
1

b0
1
0
0
0
1
1
0

c0
0
0
0
1
1
0
1
1

c1
0
0
1
0
1
1
1
1

b1
0
0
1
1
0
0
0
1

c1
1
1
0
0
0
0
0
0
```

Adjacency Matrix of G

Signed Adjacency Matrix As There exists a signing such that all the eigenvalues of A_s are in the range $[-2\sqrt{d-1}, 2\sqrt{d-1}]$

